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Abstract—Nucleosomes and the free linker DNA between them assemble the chromatin. Nucleosome positioning plays an important

role in gene transcription regulation, DNA replication and repair, alternative splicing, and so on. With the rapid development of

ChIP-seq, it is possible to computationally detect the positions of nucleosomes on chromosomes. However, existing methods cannot

provide accurate and detailed information about the detected nucleosomes, especially for the nucleosomes with complex

configurations where overlaps and noise exist. Meanwhile, they usually require some prior knowledge of nucleosomes as input, such

as the size or the number of the unknown nucleosomes, which may significantly influence the detection results. In this paper, we

propose a novel approach DPNuc for identifying nucleosome positions based on the Dirichlet process mixture model. In our method,

Markov chain Monte Carlo (MCMC) simulations are employed to determine the mixture model with no need of prior knowledge about

nucleosomes. Compared with three existing methods, our approach can provide more detailed information of the detected

nucleosomes and can more reasonably reveal the real configurations of the chromosomes; especially, our approach performs better

in the complex overlapping situations. By mapping the detected nucleosomes to a synthetic benchmark nucleosome map and two

existing benchmark nucleosome maps, it is shown that our approach achieves a better performance in identifying nucleosome

positions and gets a higher F -score. Finally, we show that our approach can more reliably detect the size distribution of nucleosomes.

Ç

1 INTRODUCTION

NUCLEOSOMES are the basic subunits of chromatins in
eukaryotes. A nucleosome is composed of the 146 bp

core DNA twined about 1.65 turns around the histone
octamer and a 10�90 bp of linker DNA between nucleo-
somes [1]. The nucleosomes are arranged at a regular interval
of�200 bp along the chromosomes and appear like beads on a
string. The core particle consists of two copies of each histone
protein (e.g., H2A, H2B, H3 and H4) [2]. The linker histone
H1 does notmake up the beads, but it helps stabilize the struc-
ture. Nucleosomes package DNA and further compact chro-
mosomes into higher order structure so that chromosomes
can be stored in the limited space of a cell. The presence of
nucleosomes blocks transcription factors’ access to DNA so
that the nucleosome-free DNA can be transcribed more eas-
ily [3], [4]. But the positions of nucleosomes are not static on
chromosomes and they can shift in a certain range in terms
of time or cell types [5]. As a result, nucleosome positioning
plays an key role in the direct or indirect regulation of DNA
replication, transcription, repair and alternative slicing [6],
[7], [8], [9]. Thus, the accurate identification of nucleosome
positions has a great significance in understanding the
mechanisms of biological processes [10], [11].

With the rapid development of next generation sequenc-
ing (NGS), massive amounts of data can be generated in a

relatively short time, which makes nucleosome mapping to
chromosomes at a high resolution possible. Based on chro-
matin immunoprecipitation (ChIP), the ChIP-seq technique
of low cost and high efficiency was developed to analyze
genome-wide interactions between DNA and proteins. In
the process of ChIP, micrococcal nuclease (MNase) is used
to digest nucleosome-free DNA [12]. It cuts the chromatin
into DNA fragments and isolates the DNA wrapped around
histones after MNase digestion [13]. For single-end sequenc-
ing that is still adopted widely, DNA reads are obtained by
sequencing 20�50 base pairs starting from the 5’ end, and
then are aligned to the reference genome. DNA fragments
can be sequenced only from one direction, and the mapped
reads aggregate on both sides of the potential nucleosomes,
thus presenting the bimodal pattern. For paired-end
sequencing, a single DNA fragment can be sequenced from
both 5’ end and 3’ end, so both ends of the DNA fragment
can be sequenced. A mapped paired-end fragment indicates
the position of nucleosomal DNA of a certain size.

In the past years, some nucleosome maps across the
genomes of various model organisms were reported [14],
[15], [16], [17]. As experimentally determining of nucleo-
some positions is of high cost and low efficiency, which lim-
its the subsequent analysis to some extent [18], [19], more
and more effort has been put to establish computational
models based on sequencing data to predict the positions of
nucleosomes. This is also our focus in this paper.

Existing computational approaches for identifying nucle-
osome positions based on sequenced reads can be roughly
classified into three types: peak calling, template matching
and data mining based approaches.

MACS [20], QuEST [21] and PeakSeq [22] are representa-
tives of peak calling methods. They usually consist of the
following basic components: the generated signal profile,
background noise model, peak calling criteria and ranking
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of the called peaks. They are good at detecting well-posi-
tioned nucleosomes, but cannot handle the nucleosomes
with complex configurations well, where nucleosomes do
not keep phased and show fuzzy or overlapped in the same
gene across a cell population [23], [24], [25]. So they are usu-
ally applied to the analysis of transcription factor binding
sites, which have shorter length and much simpler configu-
rations. In addition, peak calling methods require the esti-
mation of read shift distance or read extension length,
which has a significant influence on the final detection
result [26]. However, it is difficult to do such estimation
accurately in advance. What is worse, the information of
discrepancy between forward and reverse strands after
read shift or extension will be lost. As a result, these meth-
ods cannot even provide additional information of nucleo-
somes, such as the nucleosome size. And some of them
cannot effectively filter two types of false peaks from the
preliminary peaks generated at the peak calling step: the
false peaks based on a single strand and the false peaks
formed by duplicate accumulation of only one or a few
reads at one site [27].

Typical template matching approaches include TF [28]
and Nucleofinder [29]. They usually first introduce a series
of representative templates (also called models) to depict the
distribution of reads. Then, they calculate the defined statis-
tical indicator of each template or each possible combination
of templates for each possible nucleosome. Finally, the
nucleosomes are identified by capturing the templates with
the largest statistical indicator.

The TF method generates seven representative templates,
which correspond to possible read distributions flanking the
potential nucleosomes [30]. It then constructs the heat map of
correlation coefficient through various offsets between for-
ward and reverse templates. The nucleosomes of a certain
width are identified according to the peak points in the heat
map and under the constraint of a prespecified overlap
threshold, they are finally arranged on the chromatin by a
greedy strategy. TF can provide the size of nucleosomes, but
its greedy strategy limits the accuracy of size estimation [31].
Furthermore, it does not design any specific strategy for fil-
tering noise, so it cannot handle the background noise well.
TheNucleofindermethod introduces eightmodels including
background and enriched areas. The model, denoted as back-
ground, enriched, background, is defined as a well-positioned
nucleosome. According to the assumed distributions of
reads, it calculates the marginal likelihood in the 150 bp slid-
ing region for each model. If the background, enriched, back-
ground model has the largest marginal likelihood among the
eight models, the corresponding region is recognized as a
nucleosome. This method performs well in eliminating
experimental bias and has a high specificity by introducing
the control samples. But it obtains the center position of
nucleosome according to a fixed nucleosome size, which
makes it lose the accurate information of nucleosome size
and thus be not suitable for detecting nucleosomes in com-
plex conditions. It provides confidence score only for well-
positioned nucleosomes and does not consider overlapping
configurations. Finally, both TF and Nucleofinder cannot
provide quantified fuzziness of nucleosome positions.

A representative method based on data mining is NOr-
MAL [31]. This method builds a parametric probabilistic

model for the mapped reads and uses expectation maxi-
mum (EM) to calculate the parameters of the gaussian mix-
ture model. For each component of the mixture, the mean
and variance are defined as the center and fuzziness of
nucleosomes respectively, while the weight is regarded as
the confidence score of nucleosomes. NOrMAL can extract
the nucleosome size from the parameters. Currently, it pro-
vides the most detailed information of nucleosomes.
NOrMAL requires the prior size of nucleosomes to choose
the cluster number. However, the nucleosome size varies
substantially under different experiment conditions, so it is
difficult to accurately estimate in advance. Meanwhile,
NOrMAL is sensitive to input parameters, some small fluc-
tuations of the parameters may lead to significant difference
in the final result. In addition, it does not provide any
mechanism to effectively handle the background noise
introduced by experiments.

In this study, we present a novel approach for identifying
nucleosome positions based on the Dirichlet process (DP)
mixture model. We call the new approach DPNuc, which is
the abbreviation of Dirichlet Process mixture model based
Nucleosome positioning. Our approach can overcome the
shortcomings of existing methods mentioned above. Here,
Markov chainMonte Carlo (MCMC) simulations are applied
to estimating the parameters of the mixture model with an
unknown number of components. The 50 end positions of the
mapped reads are directly taken as the input of our method
without read shift or extension.We identify the clusters piled
up by reads on the forward and reverse strands, respectively.
Then the concept support reads is introduced for each cluster,
and the number of support reads is calculated. The back-
ground noise is modeled as a Poisson distribution where a
dynamic parameter �local is adopted [20]. Only the clusters
that have a significant number of support reads (p-value

� 10�5 by default) will be kept. In such a way, we can filter
the background noise well. After the identification of nucleo-
some borders on each strand, we merge the borders. Then,
we match the resulting borders within a specified range
according to a proposed matching strategy. Finally, the
detected nucleosomes are merged if the overlap between
them is above a prespecified overlap threshold.

We conduct experiments on the datasets of Saccharomy-
ces cerevisiae of different sequence depths and different
experiment conditions, and the datasets of paired-end reads
of mouse embryonic stem cells (ESCs). Compared with
three state-of-the art methods, including TF [28], NOrMAL
[31] and Nucleofinder [29], our method can provide more
detailed information about the reported nucleosomes, and
performs better in identifying nucleosomes with complex
overlapping configurations. Comparing the identified
nucleosomes against a synthetic benchmark nucleosome
map of mouse ESC and two existing benchmark nucleo-
some maps of Saccharomyces cerevisiae, our method gets
the highest F -score, which demonstrates that our method
does better than the existing methods in identifying nucleo-
some positions. We also show that our method can detect
the changes of experiment conditions and estimate the size
distribution of nucleosomes more reliably.

For a quick understanding of the difference between our
approach and the existing methods, we present a general
and qualitative comparison of our approach with three
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major existing methods in Table 1 from four aspects:
whether or not the method need prior size of nucleosomes as
input? whether or not the method can output the size and
fuzziness of nucleosomes? whether or not the method can
detect nucleosomes with complex configurations? and how
does the method perform? Among all the compared meth-
ods, our method is the only one that holds all the four merits:
need no prior size of nucleosomes as input, can output the
size and fuzziness of nucleosomes, can detect nucleosomes
with complex configurations, and has the highest F -score.

2 METHODS

In this section, we present the proposed method DPNuc.
Fig. 1 shows the pipeline of DPNuc, which consists of the
following functional modules: preprocessing, normalization,
modeling read distribution based on the Dirichlet process mixture
model, MCMC simulations, kernel density estimation (KDE),
background noise filtering, border merging, border matching,
nucleosome identification and merging. Here, MCMC simula-
tions, KDE, background noise filtering and border merging
constitute the major steps of nucleosome border identification;
border identification and matching, nucleosome identifica-
tion and merging constitute the main steps of the nucleosome
detection process.

In what follows, we first introduce the data used in this
study, and then elaborate the major techniques of the
DPNuc approach in detail.

2.1 Data

In this study, we use both MNase-based single-end
sequencing data of Saccharomyces cerevisiae and MNase-
seq paired-end reads of mouse ESC to identify nucleosome
positions. All the data used are summarized in Table 2.

The first dataset is from [32], which is termed Dataset-1. It
has six biological replicates grown in YPD medium, includ-
ing four non-crosslinked and two crosslinked. The MNase-
seq data is considered the most deeply sequenced among
the published datasets of yeast [36]. Here, we choose YPD_-
NOCL_R4, which has the largest sequence depth among the
six replicates. Thus, it is possible for us to get more accurate
and detailed nucleosome map.

The second dataset is from [28], which is called Dataset-2.
Here, the gel-purified mononucleosomal DNA reads are
generated at two different titration levels, that is, typical
digestion (10 mL) and overdigested (15 mL).

The third dataset is from [33], which is named Dataset-3.
It consists of the mapped paired-end nucleosomal DNA
from the mouse ESCs. The paired-end reads, which can pro-
vide the length of nucleosome DNA, are obtained after
digesting the linker DNA using MNase.

Besides the above datasets, two precise nucleosome
maps of Saccharomyces cerevisiae [34], [35] are used as

TABLE 1
A General and Qualitative Comparison of Our Approach with Major Existing Approaches

Approach Need to input prior
size of nucleosomes?

Can output
nucleosome size?

Can output
nucleosome fuzziness?

Applicable to
complex configurations?

Performance
(F-score)

TF [28] No Yes No Yes High
Nucleofinder [29] Yes No No No Middle
NOrMAL [31] Yes Yes Yes Yes Low
DPNuc (this paper) No Yes Yes Yes Highest

Fig. 1. The pipeline of DPNuc. Here, the rectangles indicate functional
modules, and the parallelograms indicate input/output modules. The
modules in the dashed box are for border identification.

TABLE 2
A Summary of the Data Used In This Paper

Name Authors Source Description

Dataset-1 Kaplan et al.

[32]

GEO accession:

GSM351492

the most deeply

sequenced dataset

of yeast

Dataset-2 Weiner et al.

[28]

GEO accession:

GSM461562

typical digested

MNase-seq

genomic DNA

GEO accession:

GSM461563

overdigested

MNase-seq

genomic DNA

Dataset-3 Teif et al.

[33]

GEO accession:

GSM1004653

the mapped

paired-end

nucleosomal DNA

from mouse

embryonic stem

cells

Map 2008 Mavrich et al.

[34]

http://genome.

cshlp.org/content/

early/2008/06/12/

gr.078261.108/

suppl/DC1

the nucleosome

map was

generated according

to the widely

accepted barrier

model

Map 2012 Brogaard et al.

[35]

http://www.nature.

com/nature/journal/

v486/n7404/full/

nature11142.html

the most precise

and detailed

nucleosome map

at present
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benchmark to verify the nucleosomes identified by our
method and the three compared methods.

A preprocessing step is performed as in [20]. The duplicate
reads whose counts exceed the sequence depth are removed
(the p-value of binomial distribution is set to 10�5 by default).
We take the 50 end position of each readwithout shift or exten-
sion as the initial input of our method, because we do not
know the exact average size of nucleosomes in advance.

2.2 The Dirichlet Process Mixture Model

In our approach, we model DNA read distribution by the
Dirichlet process mixture model. After the MNase-seq pro-
cess, we obtain a large number of mapped nucleosomal
reads. For the ith (i � N ) DNA fragment (or read) in the
forward (reverse) strand of a chromosome (here N denotes
the total number of reads in the forward or reverse strand),
we define xi as the 50 end position of the ith read, and get a
position set X = {x1, . . ., xN } in the forward (reverse) strand.
Assume that each xi 2 X is modeled as a mixture of K
parametrized normal distributions where K is unknown.
The set X ¼ fx1; . . . ; xNg have a corresponding set of latent
variables Z ¼ fz1; . . . ; zNgðzi 2 ½1; K�Þ, where zi indicates
that the ith read belongs to the left (right) border of the zith
possible nucleosome. The K normal distributions are

parametrized by Q ¼ fu1; . . . ; uKg, where uzi ¼ fmzi
; s2

zi
g, mzi

and s2
zi
represent respectively the mean value and the vari-

ance of the left (right) border of the zith possible nucleo-
some. The set P ¼ fp1; . . . ;pKg is applied to denoting the

weights of the K distributions and
PK

k¼1 pk ¼ 1ðk 2 ½1; K�Þ.
Thus, the mixture model for DNA reads in the forward
(reverse) strand can be expressed as follows:

pðxijQ;P; KÞ ¼
XK
k¼1

pkN
�
xi;mk; s

2
k

�
: (1)

We calculate the parameters Q by Bayesian random sam-
pling. The Dirichlet process is taken as a prior distribution
for the primary parameter mzi

of normal distribution to

build the Dirichlet process mixture model. In the DP mix-
ture model, the prior distribution function G is uncertain
and drawn from a Dirichlet process G � DP ða; G0Þ, where
a is the concentration parameter and G0 is the base distribu-
tion. Each mzi

is drawn independently and identically from

G while s�2
zi

has the Gamma distribution parametrized by

ða; bÞ. The Dirichlet process mixture model based on the
position dataX can be expressed as below:

xi � Nðxijmzi
; s2

zi
Þ;

mzi
� G;

G � DP ða; Nð0; 1ÞÞ;
s�2
zi

� Gammaða; bÞ:

Above, we use a Bayesian nonparametric method that
employs MCMC simulations to solve the conjugate normal-
normal DP mixture model with an uncertain number of
components [37], [38].

2.3 The Sliding Window

To use the DP mixture model, we scale the initial position
data X to the range f0; 1g as a preprocessing step of MCMC

simulations. The position data in the whole chromosome
have a large span, and if the data are directly normalized
into the range f0; 1g, the difference between any two posi-
tions xi and xj may be smaller even than the specified
threshold of read distribution variance used in nucleosome
identification (see Eq. (1)). So we apply a sliding window
along either strand of a chromosome and normalize the
position data in each sliding window.

Each sliding window consists of a center region and two
flanking boundary regions, as shown in Fig. 2. The length of
center region is selected as the step size of sliding windows.
So for two consecutive windows, their overlap is a right
boundary region plus a left boundary region, and the right
boundary region of the first window falls in the center
region of the second window. We apply the Dirichlet pro-
cess to the whole region of each sliding window to cluster
data. But for all the resulting clusters, we choose only those
falling in the center region. The introduction of flanking
boundary regions ensures that the clusters detected in the
center regions are reliable. So we consider all the clusters in
each center region. As the center regions of all windows
cover almost the whole chromosome (except for the left
boundary region of the first window and the right boundary
region of the last window), we can detect almost all possible
clusters along the chromosome. Finally, we discard the
duplicate clusters detected in neighboring windows. The
default sliding window size is 1,000 in this study. A too
large window size may make the distance between two
adjacent positions be smaller than the prespecified thresh-
old of read distribution variance. As we carry out MCMC
simulations in each sliding window, a too small window
will increase the computation burden.

2.4 Nucleosome Detection

2.4.1 Identifying Borders

In each sliding window, we conduct a number (1,500 in
this study) of iterations of MCMC simulations, and keep
the results of the last m (m ¼ 1000 in this study) itera-
tions. For each iteration, we can get a set M =

fm1; . . . ;mKi
g and a set S2 = fs2

1; . . . ; s
2
Ki
g, where Ki rep-

resents the number of distributions (corresponding to Ki

clusters) in the ith iteration. Note that the value of Ki

may be different in different iterations. mj and s2
j

ðj 2 ½1; Ki�Þ represents the mean value and the variance
of the jth distribution generated in the ith iteration of
MCMC simulation. Combining the parameter sets M and

S
2 obtained in the last m iterations, we get the resulting

sets M 0 ¼ fM1; . . . ;Mmg and S20 ¼ fS2
1; . . . ;S

2
mg.

Fig. 2. Three consecutive sliding windows on a chromosome. The sliding
window consists of three parts: the center region and two flanking
boundary regions. The length of center region is selected as the step
size of sliding windows.
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We then apply the Gaussian kernel density estimation to
M 0 as follows [39]:

bfhðxÞ ¼ 1

nh

Xn
l¼1

k
x� ml

h

� �
(2)

where kð:Þ is the Gaussian kernel function as below:

kðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�
1
2x

2
; (3)

n is the total number of elements in the set M 0, and h is the
bandwidth that is selected empirically so that h can keep
consistent in different sliding windows.

With the result of KDE above, we take the locations of
peaks above the averaged density of the resulting KDE
curve, those locations constitute a set of final mean values
of read distributions: m ¼ fm1; . . . ;mKg. Here,K is the num-
ber of peaks above the averaged density of the KDE curve.
In what follows, we try to find the K corresponding vari-
ance values of read distributions.

For each mp 2 m ðp 2 ½1; K�Þ, we search the set M 0 for a
set of mp’s neighboring mean values Mneighbor such that

each element of Mneighbor is within a specified threshold
Tm (by tuning, we set Tm ¼ 0.005 in our experiments)
away from mp. For each mean value in Mneighbor, we can

search a corresponding variance value in S
2 0, these

searched variance values constitute a set of standard
deviation values Sneighbor. We then apply KDE to Sneighbor,
and the location of the maximum density of the resulting
KDE curve is identified as the standard deviation sp, cor-
responding to mp. In such a way, we can get the set of K

final standard deviation values s ¼ fs1; . . . ; sKg, which
corresponds to m ¼ fm1; . . . ;mKg. Finally, the K final
mean values m ¼ fm1; . . . ;mKg are mapped to the original
chromosome, and the corresponding locations on the
chromosome are taken as the mean values of distributions
of reads’ 50 end positions on each strand, which are
regarded as borders of possible nucleosomes.

To illustrate the process above, we give an example in
Fig. 3. Fig. 3B shows the coverage profile of short reads
(36 bp) in a sliding window on chromosome II with the
forward strand on top and the reverse strand at bottom.
The accumulated reads on top indicate the potential left
borders of nucleosomes, and similarly those at bottom
indicate the potential right borders of nucleosomes.
Figs. 3A and 3C describe respectively the kernel density
estimates (KDEs) constructed from M 0 on the forward
(Green Curve) and the reverse strand (Red Curve) in the
same sliding window. As we scale the position data in
the sliding window to the range f0; 1g during the prepro-
cessing step, all elements in the resulting M 0 also fall into
f0; 1g.

In Fig. 3, we can see that the peaks of the green density
curve (in Fig. 3A) conform well to the green peaks of cover-
age profile (top of Fig. 3B), and similarly the peaks of the
red density curve (Fig. 3C) conform well to the red peaks of
coverage profile (bottom of Fig. 3B).

Now we introduce the concept of support reads. For the
ith identified normal distribution parameterized by mi

and si, the cumulative distribution function (CDF) is
evaluated by

Fiðx;mi; siÞ ¼ 1

si

ffiffiffiffiffiffi
2p

p
Z x

�1
exp �ðt� miÞ2

2s2
i

 !
dt: (4)

We calculate the quantiles Q1 and Q2 where FiðQ1Þ ¼
0:05 and FiðQ2Þ ¼ 0:95, respectively. The reads whose 50

end positions fall in the region between Q1 and Q2 are
regarded as support reads. They are considered to contribute
to the ith peak of the coverage profile.

As there exists experimental background noise, we need
still to filter fake peaks caused by noise. Here, we model
background reads along a chromosome as a Poisson distri-
bution with the parameter � (the p-value of Poisson distri-

bution is 10�5 by default) [27]. As in [20], � is not estimated
from the whole chromosome, instead it is dynamic. For the
ith identified distribution, � is the largest value among �bg,
�5k and �10k, where �bg is estimated from the whole chromo-
some, �5k and �10k are estimated respectively from the mean
value-centered 5 and 10 kilobases regions. If the number of
support reads from the ith distribution meets the statistical

Fig. 3. The results of MCMC simulations in one sliding window. (A) The
KDE of M 0 on the forward strand. The default bandwidth is set to 0.006.
(B) The coverage profile formed by mapped reads. The length of reads
is 36 bp. (C) The KDE of M 0 on the reverse strand. The default band-
width is set to 0.006.

1240 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2015

Authorized licensed use limited to: Harvard Library. Downloaded on February 02,2022 at 19:40:06 UTC from IEEE Xplore.  Restrictions apply. 



significance, we recognize this distribution as a candidate
border. In such a way, the distribution caused by back-
ground noise can be removed.

Given the prespecified overlap ratio threshold � between
two adjacent nucleosomes and the range of nucleosome size
½nsmin; nsmax�, two adjacent candidate borders are merged if
the distance between them is less than ð1� �Þ � nsmin. We
then combine the support reads of both candidate borders
as the support reads of the resulting border; and the mean
value of the merged support reads is calculated as the
resulting border’s position. This process is repeated till no
more candidate borders can be merged.

2.4.2 Matching Borders

After identifying all candidate left and right borders of
nucleosomes, we select paired borders for each possible
nucleosome on the forward and the reverse strands. For
each left border on the forward strand, we search for the
right borders on the reverse strand in the range of 80�200
bp away from the left border. Except the borders that cannot
be paired, for one border on the forward (reverse) strand,
there may be more than one suitable border on the reverse
(forward) strand, just as [28] showed that the borders of
nucleosomes may exhibit bimodal shapes.

Fig. 4 illustrates our border matching strategy. In imple-
mentation, we consider three situations. In Fig. 4, the left
boxes with green label represent identified borders on the
forward strand and the right boxes with red label represent
the right borders identified on the reverse strand. Each rect-
angle is labeled by “F/R+ID”, where “F” means the forward
strand, “R” indicates the reverse strand, and ID is the identi-
fier of an identified border. We assume that each time we
match only one pair of borders in the memory. The dashed
rectangles indicates the borders to be matched next time, so
they may be not yet in the memory.

Fig. 4A illustrates the simple situation, where one border
F1 on the forward strand matches only one border R1 on
the reverse strand. The matched border pair (F1, R1) makes
up a nucleosome and is moved out of the memory. Follow-
ing that, (F2, R2) is moved to the memory for matching.

Fig. 4B illustrates the situation where there are more than
one suitable border on the reverse strand matching a border
on the forward strand. Here, F1 matches both R1 and R2.
So R1 and R2 are merged to a new right border, which
assembles with F1 to form a nucleosome. Then, F1, R1 and
R2 are moved out of the memory, and (F2, R3) is moved to
the memory for matching.

Fig. 4C illustrates the situation where multiple borders
on the forward strand match one border on the reverse
strand. Here, both F1 and F2 match R2. First, F1 combines
R1 to constitute a nucleosome. Then, F1 and R1 are moved
out, while R2 is kept in the memory to match F2 to form
another nucleosome.

2.4.3 Merging Nucleosomes

By matching borders, we get a number of candidate nucleo-
somes, in which those nucleosomes having too much over-
lap should be merged. As the nucleosomes identified have
different sizes about 80�200 bp by default, for a pair of adja-
cent candidate nucleosomes NC1 and NC2, we compute
their overlap ratios with each other: �12 and �21. Suppose the
lengths of the two adjacent nucleosomes and their overlap
are L1, L2 and Lo, then �12 ¼ Lo=L1 and �21 ¼ Lo=L2. If �12
and �21 are both larger than the prespecified overlap ratio
threshold �, we merge the two adjacent nucleosomes NC1

andNC2 into one nucleosome.
During the mergence of nucleosomes, we combine the

support reads of the left borders and the right borders
respectively for the two merged nucleosomes. Then, the
mean value of 50 end positions of support reads from the
left borders is defined as the new left border; and similarly,
the mean value of 50 end positions of support reads from
the right borders is defined as the new right border. This
process is repeated along the chromosome till the number
of nucleosomes identified does not decrease any more. For
either border of each finally determined nucleosome, the
number of support reads is defined as the weight, and the
standard deviation of 50 end positions of support reads is
defined as the fuzziness. Combining the left and the right
borders, we can determine the size of each identified nucle-
osome as the DNA length between the left and the right bor-
ders, and then we calculate the confidence score
(conf score) for each nucleosome as follows:

conf score ¼ size � wl þ wr

maxðsprÞ �minðsplÞ ; (5)

where size is the size of nucleosome, wl and wr represent the
weights of the left border and the right border respectively,
spl and spr are the set of 50 end positions of support reads
on the left border and the right border, respectively. The
confidence score is equivalent to the average coverage of
the support reads of both borders. To evaluate confidence
score, those support reads are first extended to the size of
each detected nucleosome. A larger score indicates that the
corresponding nucleosome covers more support reads, so it
is more possible that the detected nucleosome is a real one.

3 EXPERIMENTAL RESULTS

To validate the performance of the proposed approach, we
first conduct local analysis of the identified nucleosomes to

Fig. 4. The three situations of our bordermatching strategy to handle. The
black solid boxes represent the borders in the memory, which are being
processed. The blue dashed boxes represent the borders to be proc-
essed. Boxes with green label denote the borders on the forward strand
and boxes with red label denote the borders on the reverse strand.
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show that our approach can provide detailed information of
the detected nucleosomes, then check the positions of identi-
fied nucleosomes against a synthetic benchmark nucleosome
map and two existing benchmark nucleosome maps to prove
that our approach performs well in identifying nucleosomes,
and finally analyze the size distribution of identified nucleo-
somes to demonstrate that the results output by our approach
are reliable. We compare our approachwith three state-of-the
art nucleosome identification methods: TF, Nucleofinder and
NOrMAL. TF and Nucleofinder are two representative tem-
plate-based methods, and NOrMAL is a typical data mining
based method. TF, NOrMAL and Nucleofinder were all
proposed in 2010, 2012 and 2013 respectively.

3.1 Local Analysis

To check the detailed information of the identified nucleo-
somes, we carry out local analysis on the detected nucleo-
somes on Chromosome II from Datatset-1. We set the range
of nucleosome size as [80, 200] and the overlap threshold �
as 0.35, respectively, as most existing methods did. Other
parameters are taken by default according to the experimen-
tal settings reported in these methods’ original papers.

Fig. 5 shows the results of local analysis. Here, the cover-
age profile shows the pileup of short reads (36 bp in length)
on each strand: the green curve represents the coverage pro-
file on the forward strand, and the red curve depicts the
coverage profile on the reverse strand; the rounded rectan-
gles represent the identified nucleosomes, with different
colors to describe the identified nucleosomes by different
methods; the height of each rounded rectangle indicates the
confidence score of the identified nucleosome; the error bars
adhered to the borders of each rounded rectangle mean the
fuzziness provided by the corresponding method.

Except for Nucleofinder, all the other three methods
can output nucleosome size. Nucleofinder regards that all

nucleosomes have similar size of 150 bp and applies a
150 bp sliding window with a step size of 10 bp. It detects
only 30 bp enriched center regions of nucleosomes and cal-
culates the Bayesian factor as confidence score. So we use
short yellow rounded rectangles of length 30 bp to indicate
the center regions of nucleosomes detected by Nucleofinder.
Compared with the other three methods, it provides
the least information about the identified nucleosomes.
Although it can detect independent nucleosomes relatively
accurately, it cannot deal with overlapping nucleosomes
well. So the results of Nucleofinder cannot reveal the
intricate configurations of nucleosomes in a reasonable way.

Although NOrMAL can output detailed information of
identified nucleosomes, including size and fuzziness, the
precision of nucleosome positions is lower than the other
methods (we delay the detailed discussion on prediction
accuracy of NOrMAL to next section). Here, we can see that
the first nucleosome identified by NOrMAL is roughly simi-
lar to the first ones detected by the other methods, but its
second detected nucleosome is unreasonable. NOrMAL
requires a prior size of nucleosomes as input, and the
change of input prior nucleosome size will lead to instable
results. So the size distribution of identified nucleosomes
relies on the input prior size to a great extent. In other
words, the resulting nucleosome size by NOrMAL cannot
reflect the real nucleosome size accurately. We will show
detailed results in the following section. Compared with
our method, it can provide only the fuzziness of nucleo-
somes as a whole (the error bars on both sides are the
same), while our method can provide separate fuzziness for
the two borders of each identified nucleosome (the error
bars on both sides are independent).

TF cannot output fuzziness values of identified nucleo-
somes, which leads to the loss of detailed nucleosome con-
figuration information. In the first half of the coverage
profile, TF recognizes one nucleosome while our method
detects two overlapping nucleosomes with small fuzziness.
In the second half of the coverage profile, both methods
report one nucleosome, while our method generates wide
error bars and a larger confidence score, which indicates
that the identified nucleosome is probably formed by merg-
ing two overlapping nucleosomes. However, TF cannot
reveal such information and cannot distinguish the second
detected nucleosome much in configuration from the first
one, except that the latter has a smaller confidence score.

By local analysis and comparison with three existing
methods, we can see that our method can provide more
detailed and accurate information of the reported nucleo-
somes, and the nucleosomes identified by our method
reveal the real and intricate configurations better on the
chromosomes.

3.2 Comparing Against Nucleosome Maps

To further validate the performance of our method, we com-
pare the detected result of our method against a synthetic
benchmark nucleosome map and existing benchmark nucle-
osome maps.

For the paired-end reads of Dataset-3 we select all the
2,000,000 nucleosomal DNA fragments, which fall into
the area 3,001,422 � 22,086,379 on Chr14 of mouse ESCs.
We regard the centers of nucleosomal DNA fragments as

Fig. 5. The results of local analysis on the identified nucleosomes on
chromosome II. The rounded rectangles of different colors represent the
detected nucleosomes by different methods (the yellow rounded rectan-
gles represent only the 30 bp center regions of nucleosomes detected
by Nucleofinder). The green curve and red curve denote the coverage
profiles on the forward strand and the reverse strand, respectively.
The height and length of each rounded rectangle depict the confidence
score and the size of the corresponding identified nucleosome.
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the initial nucleosome positions. Then, we merge the adja-
cent overlapping nucleosomes whose overlapping amount
is above the given maximum overlap into a new nucleo-
some. The position of the new nucleosome is determined by
the weighted average position of the overlapping nucleo-
somes, with the number of nucleosomal DNA fragments of
each nucleosome as weight. The mergence process is
repeated till no more adjacent nucleosomes can be merged.
Finally, the resulting nucleosome positions are set as the
synthetic benchmark nucleosome map. Here, we convert
the original paired-end reads into single-end reads, and
process them by all the four methods.

Because of the difference in experiment conditions and
biological materials, existing maps of nucleosomes in
Saccharomyces cerevisiae are not always consistent. Never-
theless, most nucleosomes in Yeast are arranged in an well-
positioned way [40]. To comprehensively compare the per-
formance of the four methods, we also use two nucleosome
maps [34], [35] of Saccharomyces cerevisiae as benchmark.
One genome-wide map (called Map 2008 in this paper) was
presented according to the widely accepted barrier model
for nucleosome statistical positioning, and the other map
(denoted as Map 2012 in this paper) at the base-pair resolu-
tion is regarded as the most precise and detailed at present.
Here, we use Dataset-1 because it generates the most deeply
sequenced data of Yeast up to now and can help us analyze
the nucleosomes more accurately and detailedly.

We align the nucleosomes identified by the four methods
to the synthetic nucleosome map and the two existing maps
respectively, and evaluate the F -score (F in short). We use
the F measure because it is a combination of precision and
recall, which can more comprehensively evaluate the predic-
tion performance.

The number of nucleosomes successfully aligned to the
maps (The distance between their centers is no larger than
30 bp) is regarded as true positive (tp), and the number of
nucleosomes that cannot be aligned to the map is defined as
false positive (fp). The number of the remaining nucleosomes
on the map is defined as false negative (fn). Then, F is evalu-
ated as follows:

precision ¼ tp

tpþ fp
; (6)

recall ¼ tp

tpþ fn
; (7)

F ¼ 2 � precision � recall
precisionþ recall

: (8)

Table 3 shows the precisions, recalls and F scores by
the four approaches on the selected area of Chromosome

14 from mouse ESCs. We can see that our method
achieves the highest values (bold numbers) of precision,
recall and F score.

Figs. 6 and 7 show the F scores of the four methods on
the 16 chromosomes of Saccharomyces cerevisiae, by align-
ing the identified nucleosomes to Map 2012 and Map 2008,
respectively. We can see that our method achieves a rela-
tively higher F score than the other three methods. For Map
2012, our method obtains the highest F score on 14 of 15
chromosomes (except Chromosome 3). Note that the F
score on Chromosome 10 shows an abnormally sharp
down for all methods on both maps, we think this may
be due to the original dataset, so we do not take Chromo-
some 10 into consideration in the following analysis. As
for Map 2008, our method also has the highest F score on
14 of 15 chromosomes (except Chromosome 14).

Compared with the other methods, NOrMAL performs
poorly and has a significantly lower F score. This may be
caused by its aggressive merging strategy. By contrast, our
method achieve highest F score on the synthetic map and
most chromosomes of both existing maps. So our method
can position the nucleosomes more satisfactorily.

Table 4 presents the time cost of the four methods. As
MCMC simulation is computationally intensive, the proc-
essing time of our method is more than the other three
methods. However, the processing time is still acceptable.

TABLE 3
Results When Aligned to the

Synthetic Benchmark Nucleosome Map

Approach Precision Recall F-score

TF 0.7189 0.6851 0.7016
Nucleofinder 0.7289 0.4011 0.5175
NOrMAL 0.6856 0.3440 0.4582
DPNuc 0.9096 0.7791 0.8393

Fig. 6. The F scores of the four methods on the 16 chromosomes of
Saccharomyces cerevisiae (aligning to Map 2012).

Fig. 7. The F scores of the four methods on the 16 chromosomes of
Saccharomyces cerevisiae (aligning to Map 2008).
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For processing Dataset-3, our method consumes 7,842
seconds, while TF, NOrMAL and Nucleofinder need 7,759,
4,951 and 438 seconds, respectively.

3.3 Size Distribution of Identified Nucleosomes

To further validate the performance of our approach, we
examine the size distribution of identified nucleosomes
from data generated under different experimental
conditions.

In ChIP-seq experiments, DNA attached to nucleosomes
is protected from digestion of micrococcal nuclease, MNase
mainly digests the linker DNA and isolates the nucleo-
somes. Through reverse crosslink, DNA wrapping around
histones is released. The lengths of DNA fragments are
related to nuclease titration level [41], [42]. With a higher
level of nuclease titration, the proportion of mononucleoso-
mal DNA gets larger, and DNA fragments become shorter
[28]. Here, we adopt two titration levels, i.e., the typical
10 mL MNase and the overdigested 15 mL MNase, and
examine the size distribution of nucleosomes predicted by
our method, TF and NOrMAL. Because Nucleofinder can-
not provide nucleosome size, it is not considered here. Con-
sidering that the input prior size of nucleosomes is crucial
to the final size distribution predicted by NOrMAL, we take
two different prior sizes: 110 bp and the default 140 bp,
respectively. Here, we identify the nucleosomes on Chro-
mosome II of Saccharomyces cerevisiae of Dataset-2, the
results are shown in Fig. 8.

In Fig. 8, the vertical axis Frequency means the number of
detected nucleosomes of a certain size; the subfigures on the
left and the right illustrate the distributions of nucleosome
size in the range 80�100 bp for 10 and 15 mLMNase, respec-
tively. Our method and TF detect a significant change of
size distribution at different nuclease titration levels. As the
nuclease titration level increases, the size of identified
nucleosomes turns smaller clearly. This conforms to experi-
mental observation. In Figs. 8A and 8B, we can see that our
method detects roughly the same distribution change as TF
does. That is, the distribution of nucleosome size concen-
trates from around 125 bp to around 90 bp when the MNase
titration level grows from 10 to 15 mL. However, NOrMAL
does not detect such change. From Figs. 8C and 8D, we can
see that for NOrMAL, the concentration center (where the
distribution density is the largest) of size distribution for
the two different nuclease titration levels are quite close (the
shift is about 10 bp), whether the input prior size is set to
140 or 110 bp. Surprisingly, at the same titration level, when
the input prior size decreases, the concentration center of
size distribution follows the same down trend. For example,

at 10 mL MNase titration level, when the input prior size
decreases from 140 to 110 bp, the concentration center of the
size distribution changes from around 140 to around 110 bp
correspondingly. Thus, the input prior size of nucleosomes
has a significant influence on the final results of NOrMAL.
However, it is difficult to get an accurate prior size of nucle-
osomes, so NOrMAL cannot output accurate nucleosome
size as our method and TF can do.

3.4 Reliability of Nucleosome Size Distribution

Here, we demonstrate the reliability of the size distribution
of nucleosomes identified by our method. For this end, on
the one hand, we compare the size distribution of paired-
end sequenced nucleosomal DNA with the with size distri-
butions of nucleosomes identified by different methods
over Chromosome 14 of Dataset-3; on the other hand,
we check the sensitivity of our method to random read
permutation along chromosomes.

We identify nucleosomes from the single-end reads
transformed from paired-end reads of Chromosome 14 of
Dataset-3, by the four methods. An ideal result is that the
size distribution of detected nucleosomes keeps consistent

TABLE 4
Time-Cost Comparison of the Four Methods

Approach Dataset-1 (s)
(Chr1-Chr16)

Dataset-3 (s)
(the selected area

on Chr14)

TF 544 7,759
Nucleofinder 273 438
NOrMAL 117 4,951
DPNuc 3,918 7,842

Fig. 8. The size distribution of nucleosomes identified by different meth-
ods over Chromosome II of Dataset-2 at different MNase titration levels.
The vertical axis Frequency means the number of detected nucleo-
somes of a certain size; the left and the right figures illustrate the distri-
butions when the MNase titration level is 10 mL and 15mL, respectively.
(A) DPNuc; (B) TF; (C) NOrMAL with the input prior size being 140 bp;
(D) NOrMAL with the input prior size being 110 bp.
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with the size distribution of paired-end sequenced nucleo-
somal DNA. A method that gets the ideal size distribution
is considered reliable.

Fig. 9 shows the size distribution of paired-end
sequenced nucleosomal DNA and the size distributions of
nucleosomes identified by our method, TF, NOrMAL
respectively. The size distribution of paired-end sequenced
nucleosomal DNA is considered the ground truth, which is
shown in Fig. 9A. We can see that its concentration center is
located around 150 bp. The result of our method is shown
in Fig. 9B, which is quite similar to Fig. 9A. Although the

size distribution obtained by TF (see Fig. 9C) concentrates at
around 150 bp, it also aggregates on the left boundary, that
is near 80 bp, which is not reasonable. As for the size distri-
butions achieved by NOrMAL with the input prior size 140
and 110 bp (see Figs. 9D and 9E), they concentrate at around
140 and 125 bp respectively, and their distribution shapes
are significantly different from that of the ground truth.

Now we examine the the sensitivity of our method to
random read permutation. Before permutation, the size dis-
tribution of nucleosomes should appear like Gaussian dis-
tribution and shows a significant concentration at a certain

Fig. 9. Comparison of size distribution of paired-end sequenced nucleosomal DNA with size distributions of nucleosomes identified by different meth-
ods over Chromosome 14 of Dataset-3. The vertical axis Frequency means the number of detected nucleosomes of a certain size. (A) The paired-
end sequenced nucleosomal DNA; (B) DPNuc; (C) TF; (D) NOrMAL with the input prior size being 140 bp; and (E) NOrMAL with the input prior size
being 110 bp.

Fig. 10. The size distribution of nucleosomes identified by different methods on Chromosome II of Dataset-1. The solid curves and the dashed curves
illustrate respectively the nucleosome size distributions before and after permutation. (A) DPNuc; (B) TF; (C) NOrMAL with the input prior size being
140 bp; and (D) NOrMAL with the input prior size being 110 bp.
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size. This has special biological meanings. Once we ran-
domly permute the positions of reads on the chromosomes,
such permuted reads cannot be acquired in real biological
experiments, so nucleosomes detected on such data should
make no sense. We expect that the size distribution of nucle-
osome detected on permuted data is more uniform than the
size distribution of nucleosome detected on the original
data. If our method meets this expectation, we think that its
result is reliable.

In Fig. 10, we present the size distributions of the identi-
fied nucleosomes by our method, TF and NOrMAL, before
and after permutation on Chromosome II of Dataset-1. The
solid curves depict the size distributions before permutation
and the dashed curves depict the size distributions after
permutation. From Figs. 10A and 10B, we can see that both
our method and TF obtain a much more uniform size distri-
bution after permutation than before permutation. After
permutation, the size distribution by our method shows a
slightly higher density (the largest density is 0.0122 ) in the
central region and a relatively lower density in the bound-
ary regions. This result is reasonable. A little differently, the
size distribution by TF concentrates in the boundary regions
(the largest density is 0.0134), which may be caused by its
nucleosome assembly strategy. TF determines the final
nucleosomes from preliminary nucleosomes using a greedy
approach; and for overlapping nucleosomes, it keeps only
the nucleosome with the largest correlation score in a
certain range, while ignoring the one overlapping with it.

On the contrary, as shown in Figs. 10C and 10D, NOr-
MAL does not show much distribution change after permu-
tation, the size distribution it obtains still has an obvious
concentration around the input prior size. We can see that
different input prior size results in quite different size distri-
butions after permutation. So we can infer that nucleosome
size obtained by NOrMAL is not reliable.

In summary, in comparison with the size distribution of
paired-end sequenced nucleosomal DNA, our method can
detect the nucleosome size distribution consistent with the
ground truth; in the testing of sensitivity to random read
permutation, our method and TF both obtain more uniform
size distributions after read permutation, and the distribu-
tions do not significantly concentrate at any specific size,
but the size distributions obtained by TF have a little higher
density near the boundary after permutation. Quite differ-
ently, NOrMAL is much less sensitive to read permutation
than our approach and TF. So the nucleosomes identified by
our method are more reliable than those identified by TF
and NOrMAL.

4 CONCLUSION

In this paper, we present a new approach called DPNuc for
nucleosome positioning, which is based on the Dirichlet
process mixture model. Compared with three state of the
art methods, our method can provide more detailed and
accurate information of the detected nucleosomes. The local
analysis of identified nucleosomes shows that our method
can detect nucleosomes with complex configurations and
can reveal more intricate information of nucleosomes on
chromosomes. By comparing against a synthetic nucleo-
some map and two existing nucleosome maps, our method

performs better in identifying nucleosomes and obtains a
higher F -score. Furthermore, by detecting nucleosomes
from data generated at two different nuclease titration lev-
els, the results show that our method can successfully detect
the change of experimental conditions, which means that
the sizes of nucleosomes obtained by our approach are
accurate. Finally, we compare the size distributions of
nucleosomes detected by different methods with the size
distribution of paired-end sequenced nucleosomal DNA,
and check the size distributions of nucleosomes identified
before and after random read permutation along chromo-
somes, the results show that our method can obtain nucleo-
some size distribution quite consistent with that of paired-
end sequenced nucleosomal DNA, and quite different
nucleosome size distributions before and after read permu-
tation, which indicates that the size of nucleosomes
obtained by our approach is more reliable.
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