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Single-cell assays have transformed our ability to model heterogeneity within cell
populations. As these assays have advanced in their ability to measure various
aspects of molecular processes in cells, computational methods to analyze and
meaningfully visualize such data have required matched innovation. Independently,
Virtual Reality (VR) has recently emerged as a powerful technology to dynamically
explore complex data and shows promise for adaptation to challenges in single-cell
data visualization. However, adopting VR for single-cell data visualization has thus far been
hindered by expensive prerequisite hardware or advanced data preprocessing skills. To
address current shortcomings, we present singlecellVR, a user-friendly web application for
visualizing single-cell data, designed for cheap and easily available virtual reality hardware
(e.g., Google Cardboard, ∼$8). singlecellVR can visualize data from a variety of
sequencing-based technologies including transcriptomic, epigenomic, and proteomic
data as well as combinations thereof. Analysis modalities supported include
approaches to clustering as well as trajectory inference and visualization of dynamical
changes discovered through modelling RNA velocity. We provide a companion software
package, scvr to streamline data conversion from the most widely-adopted single-cell
analysis tools as well as a growing database of pre-analyzed datasets to which users can
contribute.
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1 INTRODUCTION

Characterization of cell type, while once dominated by pathological description, has over the past
decade shifted towards a more quantitative and molecular approach. As such, molecular
measurements in single cells have emerged as the centerpiece of the current paradigm of
mechanistic biological investigation (Trapnell, 2015). Technological advancements have enabled
researchers to measure all aspects of the central dogma of molecular biology at the single-cell level
(Stuart and Satija, 2019). Single-cell RNA sequencing (scRNA-seq), a technique that profiles the
relative expression of genes in individual cells and single-cell Assay for Transposase Accessible
Chromatin using sequencing (scATAC-seq), a technique that surveys genome-wide chromatin
accessibility are the most well-established and widely-used of these methods (Buenrostro et al., 2015;
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Lähnemann et al., 2020). In fact, combined scRNA-seq +
scATAC-seq assays are now routine (Perkel, 2021).
Additionally, assays to profile DNA methylation (Luo et al.,
2018) or protein levels are now maturing and becoming more
widely-accessible (Specht et al., 2019; Labib and Kelley, 2020).
Most recently, combinations of various data modalities can now
routinely be collected in parallel from the same cell (Chen S. et al.,
2019; Zhu et al., 2019; Ma et al., 2020; Xing et al., 2020; Swanson
et al., 2021).

scRNA-seq experiments generate on the order of millions of
sequencing reads that sample the relative expression of
approximately 20,000–30,000 transcribed features (e.g., genes)
in each cell of the sample. Normalized read counts for each
feature can then be compared to discern differences between cells.
scATAC-seq samples comprise a larger feature space wherein
cells are characterized by the genomic coordinates of chromatin
accessible regions and sequence-features derived from these
regions (e.g. transcription factor motifs, k-mer frequencies,
etc.). Initially performed in dozens to hundreds of cells, these
experiments are now performed on the order of millions of cells.
With a high dimensional feature space as a result of thousands of
features being considered for each cell and large (in cell number)
experiments, analysis methods for this data have been required to
advance concurrently with the development of these technologies
(Chen et al., 2019c; Tian et al., 2019).

With the exception of proof-of-concept methods still too
nascent to be widely applied (Chen et al., 2021), omics
measurements of single-cells are generally destructive,
preventing measurement of a cell at more than a single time
point. As a result, most single-cell measurements for studying
dynamic processes are of a “snapshot” nature, imposing inherent
limitations on the study of such processes from this data
(Weinreb et al., 2018). In light of this, transcription rates can
be informative of ongoing processes in cells. The recent advent of
RNA velocity quantifies and models the ratios of spliced and
unspliced RNA (mRNA and pre-mRNA, respectively) such that
they indicate the temporal derivative of gene expression patterns
and thereby reflect dynamic cellular processes, allowing
predictions of past and future cell states (La Manno et al., 2018).

Among others, PCA, t-SNE, and UMAP are dimensional
reduction methods that have become common choices for
enabling the visualization of high-dimensional single-cell
datasets. Dimensionally reduced datasets are plotted such that
similar cells cluster together and those with highly differing
features are likewise clustered apart. In addition to the
visualization and clustering of cells, trajectory inference
methods have been proposed to learn a latent topological
structure to reconstruct the putative time-ordering
(pseudotime) by which cells may progress along a dynamic
biological process (Saelens et al., 2018). As single-cell
technologies have advanced, techniques to cluster and organize
cells based on single-cell assays have advanced alongside them,
allowing key insights toward cell type and state characterization.
Combined with RNA velocity information, trajectory inference
can offer key insights on dynamical changes to cell states. Once in
press however, representation of these dimensionally-reduced
visualizations is limited to just two or three dimensions. Even

using three-dimensional plots from published studies, one cannot
dynamically adjust or rotate the visualization to better
understand the data from another angle. In addition, cells are
typically annotated by features (e.g. time points, cell type or
clusters) to investigate stratification along an axis of some
biological process. To change the annotations presented in
publication, one must often reprocess the raw data, which is
time- and skill-intensive, highlighting the need for more
dynamical visualization tools. While such current data
representations are often limited and static, single-cell omic
datasets are information-rich and, in many cases, important
biological heterogeneity cannot be easily investigated or
visualized outside the scope of the original publication,
without spending considerable cost and time to reanalyze the
datasets from scratch.

VR visualization methods for single cell data have been
recently proposed (Yang et al., 2018; Legetth et al., 2019;
Bressan et al., 2021). However, these methods require either
expensive hardware or specific data inputs that mandate
intermediate to advanced computational skills. Thus, tools and
clear protocols are required to enable researchers, especially those
who are not able to efficiently reprocess the raw data, to explore
the richness of published datasets (or their own unpublished
data) through a simple, easy and affordable VR platform.
Importantly, this platform must be flexible enough to accept
all types of omics data from established and emerging
technologies and processing tools currently employed by the
single-cell community.

At the time of this writing, three non-peer-reviewed methods
employing VR technology that produce two- and three-
dimensional visualizations of single-cell data have recently
been reported. CellexalVR enables the visualization of standard
scRNA-seq data though requires users to preprocess their data
through scripting (Legetth et al., 2019). Unfortunately, this tool
also requires expensive and dedicated VR hardware to operate.
Another recent method for visualizing single-cell data in VR is
Theia (Bressan et al., 2021), which has been designed with a focus
on the exploration of spatial datasets for both RNA and protein
measurements. Similar to CellexalVR, expensive computing
power and VR hardware required to use Theia creates a
barrier to entry. An alternative to these high-performance
methods for VR visualization of single-cell data is starmap
(Yang et al., 2018), which allows the use of inexpensive
cardboard visor hardware. However, starmap lacks the
advanced portability of outputs from commonly-used scRNA-
seq analysis tools and limits cell annotation to clustering results of
transcriptomic data. Of note, there are currently no peer-
reviewed tools available for the visualization of single-cell data
in VR illustrating the novelty in this area of research. To
overcome the limitations of these existing methods as well as
build on their qualities and initial progress, we present
singlecellVR, an interactive web application, which implements
a flexible, innovative visualization for various modalities of
single-cell data built on VR technology. singlecellVR supports
clustering, trajectory inference and abstract graph analysis for
transcriptomic as well as epigenomic and proteomic single cell
data. Importantly, singlecellVR supports visualization of cell
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FIGURE 1 | An overview of the singlecellVR user experience. Top, grey: The outputs of a standard 2-dimensional scRNA-seq analysis. Middle and bottom, purple: a
step-by-step overview of the singlecellVR workflow: 1 Schematic of flexible data conversion. One command to install (via the Python pip package manager) and one
command to convert the data to be VR-compatible. 2.Webpage for uploading and exploring VR data. 3 VR mode visualization using a cheap smartphone enabled
headset.
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dynamics as described by RNA velocity, a recent milestone in the
sequence-based analysis of single cells (La Manno et al., 2018;
Bergen et al., 2020). singlecellVR is a browser-contained, free, and
open-access tool. Notably, we have developed a one-command
conversion tool, scvr to directly prepare the results of commonly-
used single-cell analysis tools for visualization using singlecellVR.

2 RESULTS

2.1 SinglecellVR User Experience and
Overview
SinglecellVR is an easy-to-use web platform and database that can
be operated from inexpensive, cardboard visor hardware that
costs as little as ∼$8 and is available online from popular vendors
including Google and Amazon. The webpage, available at http://
www.singlecellvr.com enables users to explore several preloaded
datasets or upload their own datasets for VR visualization.
Visualization can be done either on a personal computer or
smartphone. To facilitate the transition between the personal
computer browser view and the phone-enabled VR visor (VR
mode), we have implemented an easy way to transition between
these two visualizations as described in the next sections. In VR
mode an interactive visualization is presented to the user,
allowing them to manipulate and visualize single-cell data
using an array of annotations through the cardboard visor.
Additionally, singlecellVR features the ability to receive as
inputs, the standard output files of commonly-used tools for
standard single-cell analysis: Seurat (Hao et al., 2021), Scanpy
(along with EpiScanpy) (Wolf et al., 2018; Danese et al., 2019),
STREAM (Chen et al., 2019a), PAGA (Wolf et al., 2019), and
scVelo (Bergen et al., 2020). A companion package, scvr enables
the conversion of these standard outputs to VR-compatible
objects in a single command.

In the sections below, we will describe the basis for this VR
visualization platform as well as provide descriptive examples of
the visualization that can be performed using singlecellVR. We
will compare singlecellVR to existing methods and describe its
unique advantages that build on the early progress of single-cell
data visualization in VR. We include a detailed protocol and
quick-start guide that describe how the web platform enables
researchers to explore their own data and dually functions as a
database for preformatted datasets that can be explored
immediately in VR (Supplementary Note 1).

2.2 VR Database and scvr Preprocessing
Tool
SinglecellVR provides a growing database of several datasets
processed for VR visualization. Initialization and future
growth of this database is enabled, scale-free through the
streamlined scvr utility. As shown in Figure 1, to use
singlecellVR, the user may select a precomputed dataset or
convert their data from commonly used single-cell workflows.
This conversion can be easily accomplished by using scvr, a
simple one-line command tool for performing data conversion
and produces a simple zipped .json file with all the information

required for visualizing cells and their annotations in VR.
Additionally, datasets for which RNA velocity information has
been calculated may be submitted directly for visualization of
velocity in VR without prior conversion (Supplementary Note 2;
Supplementary Notebook 4).

Conversion from the standard output of any single-cell
analysis tool to this format would normally pose a significant
methodological roadblock to most users, especially non-
computational biologists. To bridge this gap, scvr parses and
converts the outputs of Scanpy, EpiScanpy, Seurat, PAGA, and
STREAM (respectively .loom, .h5ad and .pkl) and creates the
required zipped .json file (Supplementary Note 2). This file
contains the 3-D coordinates of cells in a specified space (e.g.
UMAP, LLE, etc.), cell annotations (e.g. FACS-sorting labels,
clustering solutions, sampling time or pseudotime, etc.), and
feature quantification (gene expression levels, transcription
factor deviation, etc.). It also contains the graph structure (the
coordinates of nodes and edges) obtained from supported
trajectory inference methods. Users interested in visualizing
scRNA-seq dynamics using RNA velocity generated from
spliced and unspliced read counts can likewise prepare this
information for visualization in singlecellVR using the scvr
companion utility. Users can follow established workflows for
obtaining these insights from the raw read file inputs as well as
make use of the tutorials available at the singlecellVR GitHub
Repository (Section 5; Supplementary Notebook 4).

Importantly, scvr has been made available as a Python pip
package to streamline its installation and can convert a processed
dataset for VR visualization with a simple command. To install,
one can simply open their command line utility and run: “pip
install scvr.”Once installation is completed, the user can navigate
to https://github.com/pinellolab/singlecellvr, to copy and
customize the example commands provided to execute the
one-step process for converting their data to a VR-compatible
format. In addition to the documentation of scvr we have filmed a
short video tutorial found on the homepage of singlecellVR to
further assist less experienced users in preparing their data for
visualization.

To showcase the functionality and generalizability of scvr
across data types, we have preprocessed a collection of 17
published datasets, which includes both scRNA-seq as well as
scATAC-seq and single cell proteomic data and made them
available for immediate VR visualization. Taken together we
believe this step addresses a key limitation of previously-
developed VR tools mentioned above, and a formal
comparison is presented in Section 2.5 (Yang et al., 2018;
Legetth et al., 2019; Bressan et al., 2021).

Excitingly, given the small footprint of the files obtained with
scvr, we are offering users the ability to easily submit their
processed data to the singlecellVR GitHub Repository (see
Supplementary Figure S1) to make the tool a general
resource for the field. In this way, we hope to even further
extend the ability of biologists to visualize once static datasets
and easily generate new hypotheses through manipulation of a
large number of rich datasets. Therefore, we envision that our
website will function as a repository for VR visualization data of
single cell biological annotations.
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FIGURE 2 | Step-by-step protocol for data processing and using singlecellVR. Step 1 Single-cell data can be generated using a variety of technologies or
downloaded from online repositories*. Data can then be preprocessed and prepared for use (most often as a feature matrix) with common single-cell analysis tools**.
Step 2 Pre-processed data can be analyzed using common single-cell analysis tools (listed here). Step 3 Users can process their data for use with singlecellVR from any
of the standard outputs created by analysis tools listed in Step 2. listed at the top in a single command. Step 4 Users can select from pre-processed data or upload
their own data (Step 4b) and scan the dynamically generated QR code with their phone to begin the VR visualization (Step 4c). Step 5 Users can use the QR code on the
website to transfer their data to their phone for use with simple hardware. * and ** are explained in the Section 5 section, Step 1.
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FIGURE 3 | VR visualization of single-cell processed datasets profiled by different technologies and analyzed by various computational tools. (A) Scanpy offers
solutions for clustering single-cell data. Shown is a UMAP of the Allen Brain Atlas mouse brain scRNA-seq dataset from Yao (2020) and processed by Scanpy. Leiden
clustering solution (left) and expression of Gad1 (right). (B) Trajectory inference applications. PAGA offers a partition-based graph abstraction to uncover potential
trajectories (edges) between group of cells (nodes) (top-left) relative gene expression (e.g.,Klf1, top-right), amongst other annotations. The PAGA-analyzed dataset
shown here is from Paul, et al. (2015). STREAM offers the visualization of developmental trajectories, which can be visualized by cell identity (bottom-left) or by relative
gene expression (e.g., Gata1, bottom-right), amongst other annotations. The STREAM-analyzed dataset shown here is from Nestorowa, et al. (2016). (C) Epigenomic

(Continued )
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2.3 A Simple, Cloud-Based Web Tool for VR
Visualization
SinglecellVR is available as a webapp at http://www.singlecellvr.
com. This website enables users to explore several preloaded
datasets or upload their own datasets for VR visualization. To
build singlecellVRwe have adopted recent web technologies,Dash
by Plotly and A-FRAME, a recently-developed JavaScript
framework for VR/AR. This allowed us to create a tool that is
portable and does not require any installation. The website can be
reached through any web browser and browser compatibility was
tested against Google Chrome, Apple Safari, and Mozilla Firefox.
Visualization can be done either on a personal computer or
smartphone (both Android and Apple smartphones).

Once the users have uploaded their data to singlecellVR, they
have the option to view and explore the data in 3-D directly in
their web browser or to quickly jettison the data to their mobile
device for visualization in a VR headset (Figure 2 and
Supplementary Figure S2). A key challenge associated with
developing a method for visualization of single-cell data is
transporting data that is typically processed in desktop settings
to the smartphone-based VR visualization. In fact, we predict that
in most cases, users will prefer to upload their data through a
computer in which they may have run their analyses. To
overcome this challenge and enable a seamless transition to a
smartphone for VR view, our website dynamically generates a QR
code that enables users to open the VR view on their phone to
view data uploaded through a personal computer. This mixed
approach is particularly useful because, as mentioned before,
most users are not processing single-cell data analysis from a
phone nor would they keep the files on a mobile device.

2.4 Supported Tools and Analysis
2.4.1 Visualizing Single-Cell Clustering Solutions in VR
As previously mentioned, Scanpy and Seurat are two commonly-
used tools for performing cell clustering as well as differential
expression analysis. Here we demonstrate the utility of
singlecellVR to visualize the common outputs of these tools,
showcasing both the clustering solutions as well as
differentially expressed genes or other technical or biological
features that are visualized easily through the VR interface
(Figure 3). A key advantage of our tool is the ability to supply
multiple annotations to cells to visualize various attributes of the
measured data, for example based on a biological query of interest
or experimental design. This may include stratification by cluster
identity, time points, tissues, or FACS-based labels. In Figure 3,
we demonstrate the ability to select visualizations by various
cluster identifications, which are user-customizable. With the
advent of cross-experiment integration methods that can
integrate not only multiple scRNA-seq experiments but
experiments across modalities of single-cell data collection,

this flexible labelling strategy should enable the user in the
future to visualize even the most novel and complicated
experiments in rich detail.

In addition to flexibility for visualizing complex experimental
setups, singlecellVR is able to visualize large experiments. To
demonstrate this utility, we first processed (using Scanpy and
scvr) and visualized on singlecellVR, scRNA-seq data from the
Chan-Zuckerberg Biohub Tabula Muris project, a dataset
consisting of 44,949 cells and 20 tissues from seven mice
(Schaum et al., 2018). In Supplementary Figure S3A,
clustering analyses of this dataset are projected into VR,
colored by mouse tissue (left) and Louvain cluster identity
(right). With a quick rendering time (<1 s) for the Tabula
Muris dataset, we next explored the realm of visualization for
a modern, large atlas-scale dataset (>1 M cells). Using Scanpy and
scvr, we successfully processed and visualized on our website, cells
from the Allen Brain Institute that capture cortical and
hippocampal development inside the mouse brain (Figure 3A)
(Yao, 2020). This dataset consists of 1,093,785 cells and is among
the largest scRNA-seq datasets created, to date. Visualization of
this dataset in a dynamic VR setting creates the opportunity for
more in-depth study of sub-sections of the data, which is
particularly valuable for such a large dataset. While the
datasets visualized in this manuscript were obtained in their
pre-processed state, we have created IPython notebook
tutorials for integrating datasets from multiple transcriptomic
experiments as is performed in Seurat; these may be accessed in
the associated GitHub repository.

2.4.2 Visualizing Single-Cell Trajectory Inference
Results in VR
Single-cell measurements are particularly useful for capturing
cross-section snapshots of a biological process. With dense cell
sampling, one can often observe transient cell states that exist
between two, more stable states. However, without an intrinsic
understanding of the process being studied, it may be difficult to
order these cells along a time axis of a biological process. To
enable ordering cells by transcriptional (or epigenomic) states,
pseudotemporal ordering, based on trajectory inference and
machine learning algorithms has become a useful technique
for the single-cell field. Trajectory inference, like clustering,
describes a high-dimensional biological process and being
limited to a two/three-dimensional static visualization on
paper, with a limited selection of genes or annotations is not
ideal. Thus, we intend for our tool to leverage the richness of these
datasets and make their general usefulness to the field more
widespread. We therefore wanted to extend our VR visualization
to the results of common trajectory inference tools (Figure 3B).
singlecellVR supports two trajectory inference tools: PAGA, a
partition-based graph abstraction trajectory inference method
and STREAM, a method based on principal graphs (Albergante

FIGURE 3 | applications. EpiScanpy enables the clustering and visualization of scATAC-seq data (left). PBMC (healthy donor) 10,000 cells dataset analyzed by
EpiScanpy and with colors corresponding to clustering solutions (Louvain clustering). STREAM was used to perform trajectory inference on th scATAC-seq dataset
Buenrostro et al. (2018) (right). (D) Seurat offers solutions for clustering single-cell data as well as integrating datasets across experiments. Shown is a Seurat-integrated
scRNA-seq and scATAC-seq PBMC dataset from 10x Genomics, colored by technology (left) and cell type (right).
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et al., 2020) that recovers a tree like structure to summarize
developmental trajectories and to visualize the relative densities
of cell populations along each branch.

To showcase the ability of singlecellVR to visualize trajectory
inference results, we reprocessed a popular myeloid and erythroid
differentiation dataset (Paul et al., 2015), performing trajectory
inference using PAGA. PAGA is designed specifically to preserve
relative cell topology in constructing the trajectory along a
pseudotime axis. In the depiction of the PAGA-generated
trajectory, nodes (gray) correspond to cell groups, and edges
(black lines between nodes) connecting the groups quantify their
connectivity and confidence (thickness) (Figure 3B, top). To
showcase the VR output of STREAM we reprocessed a popular
mouse blood dataset (Nestorowa et al., 2016). In STREAM, a set
of smooth curves, termed principal graph, are fitted to the data
and each curve represents a developmental branch. Within
singlecellVR, we are able to easily explore these trajectories and
observe qualitatively, the distribution of cells along each branch
in the UMAP space (Figure 3B, bottom). The branches of these
trajectories are represented by the curves that cut through
the cells.

SinglecellVR and scvr also support processing and visualizing
single-cell epigenomic data. To demonstrate this functionality, we
first used the EpiScanpy workflow to cluster a scATAC-seq
dataset from 10x Genomics containing 10,000 cell PBMC
(healthy donor) (Figure 3C, left). Next we reprocessed with
STREAM a scATAC-seq dataset profiling human
hematopoiesis (Buenrostro et al., 2018) (Figure 3C, right). In
addition, we extend singlecellVR to single-cell quantitative
proteomics data. To this end we reprocessed data from
SCoPE2, a recent assay to quantitate proteins in single cells
using mass spectrometry (Specht et al., 2019). We performed
trajectory inference using STREAM on one SCoPE2 dataset
profiling the transition from monocytes to macrophages in the
absence of polarizing cytokines. Our analysis revealed a
bifurcated branch structure as cells progress towards
macrophage phenotypes (Supplementary Figure S3B).
Importantly, such bifurcation is not readily visualized in
previous reports in two dimensions. Finally, we took
advantage of the recent advances in the multi-omics field,

using Seurat to integrate and co-embed PBMC cells profiled
by scRNA-seq and scATAC-seq by 10x Genomics (Figure 3D).

2.4.3 Visualizing RNA Velocity Analysis in VR
Having successfully applied the singlecellVR framework to the
visualization of trajectory inference analyses for multiple
modalities of single-cell data, we sought to extend the
framework further to visualize dynamical changes at single-cell
resolution by way of RNA velocity. We first demonstrated this on
a popular endocrine pancreas dataset (Figure 4), which has been
previously employed to demonstrate the utility of visualizing
dynamic processes using velocity.

Visualization of RNA velocity using singlecellVR has two modes.
In the default mode, each cell is represented by an arrow where the
magnitude and direction of the arrow denote the velocity of that cell
(Figure 4A). For larger datasets, cells may be represented as spheres
while a surrounding grid system of arrows denotes the predicted
trajectory of a given cell (Figure 4B). This is particularly helpful for
interpreting the overall direction of cells in various clustering regions
or subsets of a given trajectory. In either mode, the arrows are
animated to gravitate towards the direction of the corresponding cell
trajectory. Latent time, t is a parameter of the velocity calculation for
a given cell. To aid in user comprehension of observed velocity, the
speed and distance of the animated velocity vector may be calibrated
on the fly during the VR experience through adjustment of the t
parameter using the floating VR assistance menu. These results
taken together with the visualizations of clustering analyses as well as
trajectory inference analyses indicate that singlecellVR is a robust,
generalizable tool across multiple modalities of single-cell analysis.

2.4.4 Creating Reproducible Visualizations
To enable singlecellVR users to create visualizations that can be
reproduced upon sharing, we have included a feature in the VR
interface, which captures absolute x, y, and z coordinates such
that one may navigate to an identical position with precision. In
line with this, we have also included pitch, yaw, and roll
descriptions of the camera angle view. These position
descriptions of the VR viewpoint can be captured and shared
as part of the visualization. Viewpoint descriptions may also be
toggled on or off (Supplementary Figure S4).

FIGURE 4 | VR visualization of single-cell datasets with RNA Velocity. scVelo enables efficient analysis of the RNA velocity attributes of single-cell data. Shown is a
3-D UMAP of an endocrine pancreas dataset (Bastidas-Ponce et al., 2019). (A): Cells are displayed as their corresponding 3-D velocity vectors and colored according to
cluster annotation. (B): Cells are displayed as 3-D orbs surrounded by a corresponding grid of velocity vectors. Cells are colored according to cluster annotation.
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2.5 Comparison of singlecellVR to Existing
Methods
As mentioned above, there are currently three unpublished
reports of VR tools created to visualize single-cell data:
CellexalVR (Legetth et al., 2019), starmap (Yang et al., 2018),
and Theia (Bressan et al., 2021). In this section, we compare these
tools to singlecellVR on two axes: 1) ease of use and 2) overall
performance for visualization and analysis in VR.

2.5.1 Ease of Use
Competing Tools
Both CellexalVR and Theia require or recommend HTC Vive or
HTC Vive Pro VR hardware (∼$500–1,000), an Intel Core i7
processor (∼$300) or better, an NVIDIA GTX1080 or NVIDIA
GeForce RTX 3080/3090 (∼$1,500–3,000), 16–32 GB RAM
(∼$50–150) and a solid-state hard drive (SSD) (1 TB SSD
recommended for CellexalVR) (∼$50–100). Altogether, this
equipment requires a minimum investment of roughly
$,2300–$4,550. These are computational equipment that most
biologists will not have at their disposal within their lab, likely
limiting use of this tool to more computationally-focused labs.

CellexalVR requires software and boilerplate-level to pre-
process the data in preparation for VR visualization is
required and therefore requires the user to perform scripting
to prepare data for downstream use with the VR visualization.
While Theia has provided a convenient python script to convert
AnnData objects, their software is not open-source, hindering
further community contribution.

A contrasting alternative to CellexalVR and Theia is Starmap,
which is compatible with low-cost hardware such as Google
Cardboard. However, Starmap takes as input comma-separated
values containing information of the three-dimensional
coordinates of cells in the visualization as well as annotations
(e.g., cluster ID), and up to 12 features per cell. This file must be
prepared entirely by the user without assistance from the Starmap
platform, limiting the audience of this tool to experienced
computational biologists.

singlecellVR
The single-command companion package for data preparation,
scvr described above enables users to visualize their own
precomputed data directly from the outputs of commonly-
used single-cell RNA-seq analysis tools. Currently supported
tools include Scanpy, EpiScanpy, Seurat, PAGA, STREAM, and
scVelo. singlecellVR is the only tool of the three discussed
(CellexalVR, Theia, and Starmap) that features a QR code to
quickly transport the VR data visualization to another device.

2.5.2 VR Performance and Analysis Capabilities
Competing Tools
CellexalVR proposes a versatile, user-friendly visualization for
standard scRNA-seq workflow outputs and demonstrates
comparable utility on scATAC-seq data. Theia offers a
similarly high-performance visualization of single-cell data.
Theia’s key distinguishing contribution is it’s visualization of
spatial transcriptomic single-cell datasets.

Starmap is only demonstrated on scRNA-seq data and lacks
the ability to visualize analyses beyond clustering (such as
trajectory inference or an illustration of velocity). Further,
Starmap is only capable of displaying up to 12 features for a
given cell, limiting the throughput with which users may analyze
their data.

singlecellVR
In contrast to existing methods, singlecellVR offers both a high-
performance visualization with in-depth analysis and the ability
to visualize all modalities of data at scale, while at the same time
offering a software that is compatible with low-cost hardware and
requires minimal computational abilities. These advances, which
build on the progress made by these initial methods create a tool,
which offers a low-cost alternative to existing tools with virtually
zero barrier to entry, while maintaining high-performance VR
visualizations.

3 DISCUSSION

The amount of publicly available scRNA-seq data has exploded in
recent years. With new assays to capture chromatin accessibility,
DNA methylation and protein levels in single cells, we predict a
second wave of dataset generation. Each of these datasets is
extremely high-dimensional and thus, rich with latent
information about a given biological sample. Ideally, biologists
would be able to explore this treasure-trove of data from any
angle and make hypotheses assisted by in silico analysis at little
to no time cost. Often however, experimental biologists lack the
advanced computational skills and/or time required to reprocess and
reanalyze raw data from published experiments to gain an
understanding of the data from their desired angle of interest.
Additionally, biologists who wish to thoroughly explore data
prior to publication may rely on a computational specialist who
is less connected to the biological problem of interest, introducing a
disconnect in hypothesis-driven experimental turnover.

While once primarily reserved for entertainment, VR has found
utility in both industrial and academic applications. In this
manuscript we present a protocol for visualizing single-cell data
in VR. This protocol is based on singlecellVR, a VR-based
visualization platform for single cell data and discusses its
innovations and differences with existing methods. Importantly,
we provide a simple mechanism to prepare results from commonly-
used single-cell analysis tools for VR visualization with a single
command to considerably increase accessibility (see Section 5).With
this added utility, we seek to empower non-computational biologists
to explore their data and employ rapid hypothesis testing that could
not be made from the traditional static representations typical of
communication in a scientific report on paper or a computer screen.

We anticipate that VR will become increasingly useful as a
research and education tool and that the construction of
software libraries will aid such advancements. VR has also
recently found application in other sources of biological data,
including single-neuron morphological imaging data (Wang
et al., 2019), three-dimensional confocal microscopy data for
fluorescent molecule localization (i.e., fluorophore-tagged
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proteins) within cells (Stefani et al., 2018), and three-
dimensional single-molecule localization super-resolution
microscopy (Spark et al., 2020). Our scalable and flexible
VR visualization framework is not limited to scRNA-seq
and it can be also easily adapted to other single-cell assays
and tools that already support epigenomic data and/or single-
cell proteomic data (EpiScanpy (Danese et al., 2019), Seurat
(Stuart et al., 2019), and STREAM (Chen et al., 2019a)).
Finally, we extend our framework to computational
methods that derive the RNA velocity of single cells for
visualization in VR (La Manno et al., 2018; Bergen et al.,
2020). With the recent advances in spatially-resolved
transcriptomics (Welch et al., 2019) and corresponding
analysis methods (Hao et al., 2021; Miller et al., 2021),
visualization of such data has already been extended to a
VR framework (Bressan et al., 2021). We believe this new
sort of three-dimensional VR will also become especially useful
once made available to the general research community via
inexpensive hardware and facile data preprocessing and
preparation for VR visualization. As software to analyze
single cells reach their maturity, one could imagine the
incorporation of such visualizations into more clinically
translatable settings, such as medical devices.

4 CONCLUSION

This manuscript presents singlecellVR, a scalable web
platform for the VR visualization of single-cell data and its
associated preprocessing software, scvr, which streamlines the
results of commonly used single-cell workflows for
visualization in VR. singlecellVR enables any researcher to
easily visualize single-cell data in VR. The platform is user-
friendly, requires no advanced technical skills or dedicated
hardware. Importantly, we have curated and preprocessed
several recent single-cell datasets from key studies across
various modalities of data generation and analysis
approaches, providing the scientific community with an
important resource from which they may readily explore
and extract biological insight.

4.1 Key Points
• singlecellVR is a web platform that enables quick and easy
visualization of single-cell data in virtual reality. This is
highlighted by a database of pre-loaded datasets ready for
exploration at a single click or via a QR code to quickly
jettison the visualization to a smartphone enabled VR visor.

• scvr is a companion package to easily convert standard
outputs of common single-cell tools in a single command

• singlecellVR is made for use with cheap and easily-available
VR hardware such as Google Cardboard (∼$8).

• singlecellVR can visualize both clustering solutions as well as
trajectory inference models of single-cell data for
transcriptomic, epigenomic, and proteomic data as well
as multi-modally integrated datasets. Additionally,
singlecellVR offers a three-dimensional VR visualization
of RNA velocity dynamics.

5 MATERIALS AND METHODS

5.1 Single-Cell Data Preparation
All datasets were processed using Scanpy (version 1.5.1, RRID:
SCR_018139), AnnData (version 0.7.6, RRID:SCR_018209),
EpiScanpy (version 0.1.8), Seurat (version 3.1.5, RRID:
SCR_007322), PAGA (part of Scanpy, version 1.5.1, RRID:
SCR_018139), STREAM (version 1.0), and scVelo (version 0.2.3,
RRID:SCR_018168) following their documentations. Jupyter
notebooks to reproduce data processing are available at https://
github.com/pinellolab/singlecellvr. Analyses were performed on a
2019 MacBook Pro (2.4 GHz Intel Core i9, 16 GB RAM).

5.2 Preparation of Processed Data for
Visualization in VR
The preprocessing package, scvr generates a series of .json files
containing the spatial coordinates representative of cell
embeddings in 3D embedding (e.g. PCA, UMAP, etc.) and
information including labels and features (e.g., gene
expression, TF motif deviation, etc.). These .json files are
zipped upon output from scvr into a single file that can be
easily uploaded to singlecellVR for visualization.

5.3 SinglecellVR Webapp Construction
To build singlecellVR, we used A-FRAME (version 1.2.0), Dash by
Plotly (version 1.13.3).

DATA AVAILABILITY STATEMENT

The source code and the supporting data for this study are
available online on GitHub at https://github.com/pinellolab/
singlecellvr. The preprocessing package, scvr is included within
that repository https://pypi.org/project/scvr/. The documentation
for scvr is available here: https://github.com/pinellolab/
singlecellvr. Video tutorials for learning about and running
visualization experiments with singlecellVR (and using scvr to
prepare the data) are available on YouTube, here: https://www.
youtube.com/playlist?list�PLXqLNtGqlbeMaAuiBStnBzUNE6a-
ULYx8. All the analyses in this article can be reproduced using the
Jupyter notebooks available at https://github.com/pinellolab/
singlecellvr. Additionally, we have provided a wiki within the
same repository for a more detailed guide to reproducing results
from the paper as they pertain to the supplementary materials.
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SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2021.764170/
full#supplementary-material

Supplementary Figure 1 | Instructions for contributing VR-processed data to the
singlecellVR data repository. Users can contribute to the growing repository of VR
datasets by submitting a pull request to our GitHub repository: https://github.com/
pinellolab/singlecellvr. To do so, first fork and clone the repository (steps 1 and 2,
above). Next, add your data (step 3). Finally, create a pull request (step 4) to be
submitted for approval. Once approved, your data will be incorporated into the
growing repository of VR datasets. It is necessary to add the “VR Dataset” flag
(purple, already added to the sidebar) to the pull request. In addition, we ask users to
describe the data, methods used and available annotations (e.g. genes, timepoints,
clusters labels etc.) in the commit message or comment section of the pull request.
Note: for velocity results, files >50 MB are too large to be shared through GitHub
and must be shared via other channels. However, coordination of this sharing may
proceed through GitHub as shown in this figure. For more, see Supplementary
Note 2 and Supplementary Notebook 4.

Supplementary Figure 2 | Tips for using the VR interface. (A) It is not required but
one can easily connect a keyboard with your smartphone using a Bluetooth-enabled
keyboard (a small portable keyboard can be purchased from Amazon for ∼$10).
However, you can still use a normal computer with your browser and explore using
your mouse and keyboard, the three-dimensional transcriptional space with cells,
trajectories and graph abstractions. The full set of interactive keyboard
functionalities are detailed above. (B) There are several similar versions of
cardboard VR adapters available for ∼$8. Many VR headsets such as Google
Cardboard have a single button that allows a user to click the screen of their phone
while immersed in a virtual reality experience. By holding down this button, users
without a keyboard may move forward in the direction of their gaze. You can also
simply use your computer screen to do initial exploration of the data in 2-D. (C)
Users may navigate the VR visualization via a combination of gaze controls and
keyboard inputs. A circle, centered in the user’s field of view indicates the direction
that a user will move through the virtual space and also acts as the appendage
through which the user will interact with objects in the visualization. Additionally,
users may select the “keyboard” button on the menu to render a virtual keyboard.
Cardboard users may use this keyboard to search for available features to render on
the display. The “Enter/Return” key on the virtual keyboard clears the current search.
Subsequently selecting the “keyboard” button will hide the keyboard from view.

Supplemental Figure 3 | (A) Rendering the single-cell virtual reality visualization.
Scanpy offers tools for clustering, which can be visualized using singlecellVR. Cells
can be visualized and colored by various annotations. Shown: mouse tissue type,
(left) or their cluster ID (right). The Scanpy-analyzed dataset shown here is from the
Chan Zuckerberg Initiative’s Tabula Muris dataset (Schaum et al., 2018). (B)
STREAM-processed single-cell proteomics data from SCoPE2 (Specht et al.,
2019). These visualizations are an example of an advantage gained by trajectory
analysis and three-dimensional visualization. 3-D UMAP plots (ordered left to right,
top to bottom) generated by STREAM, respectively colored by pseudotime
progression, cell type (orange: monocyte, blue: macrophage), expression of
Safb, and expression of Pfn1.

Supplementary Figure 4 | Camera coordinates and angle descriptions enable
reproducible visualizations. Shown is a UMAP of the Allen Brain Atlas mouse brain
scRNA-seq dataset Yao, et al., 2020 (Yao, 2020) and processed by Scanpy colored
by the Leiden clustering solution. Close-ups of the coordinates as well as the toggle
for displaying coordinates are shown.
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