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Abstract

Rapid technological advances in transcriptomics and lineage
tracing technologies provide new opportunities to understand
organismal development at the single-cell level. Building on
these advances, various computational methods have been
proposed to infer developmental trajectories and to predict cell
fate. These methods have unveiled previously uncharacterized
transitional cell types and differentiation processes. Impor-
tantly, the ability to recover cell states and trajectories has
been evolving hand-in-hand with new technologies and diverse
experimental designs; more recent methods can capture
complex trajectory topologies and infer short- and long-term
cell fate dynamics. Here, we summarize and categorize the
most recent and popular computational approaches for tra-
jectory inference based on the information they leverage and
describe future challenges and opportunities for the develop-
ment of new methods for reconstructing differentiation trajec-
tories and inferring cell fates.
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Introduction
During the last decade, the development of single-cell
technologies has revolutionized the way we investigate
the dynamics of cellular processes across development
and disease. Various cellular trajectory inference
methods have been implemented to reconstruct the
molecular continuum of cellular profiles and to study
cell-cycle phase transitions, cell activation, and cell fate
decisions [1]. Cellular trajectory analysis has enabled
the discovery of novel cell types and subpopulations
during differentiation [2,3], as well as helped to refine
established developmental paths and hierarchies in

several biological contexts [4,5]. In addition, decom-
position of the clonal architecture of cancer cell
populations across time has provided unique insights
into the evolution of tumor clones, new mechanisms of
chemotherapy resistance, and novel targets for drug
development [6]. Cell lineage tracing has also
pinpointed cell reprogramming events, such as in he-
matopoiesis [7,8] and epithelialemesenchymal transi-
tion [9].

These discoveries were possible, thanks to the intro-

duction of single-cell assays (Figure 1a). Convention-
ally destructive single-cell RNA sequencing (scRNA-
seq) captures a continuous distribution of cells across
differentiation stages. Each cell stage can be thought
as a vector in a multidimensional space where each
dimension corresponds to a gene, and similar tran-
scriptional states occupy similar regions in this space.
To capture the major variation modes that define cell
differences and relations, the full transcriptomic pro-
files are projected onto a lower-dimensional ‘state
space’ with dimension reduction techniques (e.g.

Principal Component Analysis or PCA, Uniform
Manifold Approximation or UMAP). In this space,
trajectory inference methods can recover a scale-free
‘pseudo-time’ to represent the relative differentiation
stage each cell is at, and/or a trajectory graph based on
curves, trees, or graphs that summarizes the develop-
mental paths across cell populations. In addition, it is
possible to infer the direction and speed of cellular
motion in the state space, known as ‘RNA velocity,’
based on mRNA processing kinetics and by interro-
gating reads corresponding to pre- (unspliced) and
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Figure 1
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A brief summary of (a) current assays (left, blue), (b) computational methods (middle, orange), and (c) single-cell trajectory definitions (right, green)
typically considered in trajectory inference or cell fate prediction.

2 Theoretical approaches to analyze single-cell data
mature (spliced) mRNAs. When single-cell measure-

ments incorporate time or clonal information, methods
are also available to leverage this information to better
predict cell differentiation dynamics and ultimately
‘cell fate,’ that is, the probability of reaching a given
differentiated state by a given cell.

Meanwhile, the emergence of multiomics single-cell
technologies has increased the complexity and
dimensionality of single-cell measurements. These
advancements provide new opportunities to better
investigate gene regulation and dynamic molecular

processes [10e12]. In fact, independent or integrated
mappings of transcriptomic, epigenomic, and proteo-
mic measurements provide the potential to understand
the mechanisms that contribute to gene regulation and
function along developmental trajectories and cell
Current Opinion in Systems Biology 2021, 26:1–11
state transitions. For example, these assays can provide

insights into the transcriptional regulators and func-
tional genomic regions mediating these processes and
can enable the reconstruction of dynamic gene regu-
latory networks that orchestrate these molecular
programs.

Here, we provide an overview of methods to reconstruct
single-cell trajectories or to model cell fate, their
required inputs, and their outputs based on available
single-cell assays and experimental designs (Figure 1).
Within the length requirements of this short review,

here we focus on discussing methods of high popularity
and performance based on overall citations, previous
benchmarks [13], and our personal experience, with an
emphasis on the widely used methods within the last 2
years.
www.sciencedirect.com
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Inferring single-cell trajectory and cell fate Wang et al. 3
Trajectory inference from snapshot data
Trajectory inference methods starting from snapshot

scRNA-seq data, represented as a gene-by-cell matrix of
the transcriptome, assign a numerical value to each cell
referred to as pseudotime. Based on pseudotime, cells
can be ordered and their progression along this pseu-
dotemporal axis may recapitulate biological develop-
mental processes.

Trajectory inference methods can be broadly divided
into two categories (Figure 1c). In the first, pseudotime
is calculated by projecting cells onto an explicit trajec-
tory graph (e.g. Monocle [14e16], TSCAN [17],

Slingshot [18], and STREAM [19]). The trajectory
graph is learned through graph or curve fitting in a low-
dimensional space using a minimum spanning tree
(MST), principal curve, principal graph, or similar
methods. In the second, pseudotime is directly inferred
from cell coordinates in a low-dimensional space, using
k-nearest neighbors (k-NN)-based random walks or
shortest path (e.g. Wishbone [20], DPT [21], PAGA
[22], and Palantir [23]). These methods vary by their
ability in detecting different trajectory topologies:
linear, tree (such as bifurcation and multifurcation),

graph with cycles, and disconnected graphs. Impor-
tantly, several of these methods are comprehensively
reviewed and benchmarked in Ref. [13].

Moreover, some methods can account for additional in-
formation such as gene expression variability. Variations
of gene expression levels have multiple origins, which
contribute differently to the phenotypic variability of
single cells at varying efficiency levels (see Ref. [24] for
a comprehensive review). One important source of gene
expression variation is the discrete bursts of mRNA

transcription [25]. Such transcriptional bursting may
confound the result of trajectory inference. To address
that, CALISTA [26] is based on SABEC [27] and can
explicitly model the transcriptional bursting in trajec-
tory inference to simultaneously obtain a mechanistic
understanding of gene transcription.

However, trajectory inference methods based on
snapshot data generate pseudotemporal ordering of
cells from static transcriptional states and cannot
incorporate time information even if it is available, a

problem also termed time ambiguity. Consequently,
this may lead to misinterpretation of cellular devel-
opmental processes as well as the mechanisms that
drive their dynamics [28,29]. Some RNA-based fea-
tures (e.g. the number of expressed genes) have been
leveraged to improve the prediction of developmental
potential [30]. These limitations can also be
compensated by distinguishing between pre-mRNAs
www.sciencedirect.com
and mature mRNAs, introducing external information
such as sampling timepoints, or using clonal history
recovered by lineage tracing assays, as illustrated in
the following sections.
RNA velocity
ScRNA-seq readouts contain both (mature) mRNA and
pre-mRNA reads; however, the latter are not used in
traditional trajectory inference methods. This extra in-
formation can be used to determine the chemical ki-
netic parameters for RNA processing for each gene and
to predict the mature mRNA’s rate of change, termed
RNA velocity as described in both bulk [31] and single-

cell [32] RNA-seq studies.

Velocyto [32], the first method to estimate single-cell
RNA velocity, is based on a steady-state model that
uses the disproportion of pre-mRNA compared to
mRNA to estimate the expected mature mRNA profile
of the corresponding future cell (Figure 1c). ScVelo [33]
fits mature mRNA and pre-mRNA levels with a system
of differential equations describing transcription,
mRNA processing, degradation, and latent time.
Dynamo [34] can also integrate metabolic-labeling in-

formation for pre-mRNA age profiling to improve the
RNA velocity estimation.

The gene-level RNA velocities are then combined to a
single-cell-level RNA velocity based on a transition
probability matrix between each predicted future cell
and observed cells. These cell velocity estimates are
then visualized in a low-dimensional state space as
vectors to represent the expected ‘motion’ in terms of
direction and magnitude. CellRank [35] and Dynamo
both extend RNA velocity to long-term extrapolation of
cell fate, although extrapolation accuracy tends to

decline on longer time scales as uncertainty accumulates
with each cellecell transition prediction.

These strategies are based on predefined mRNA dy-
namics and can offer a potential resolution to the time
ambiguity problem faced by trajectory inference of
snapshot scRNA-seq measurements. However, RNA
velocity measurements in single cells are inherently
noisy because of limited read counts of pre-mRNA.
Consequently, RNA velocity vectors are usually
smoothed between nearby cells to obtain a more robust,

representative, and collective motion. In addition, RNA
velocity depends heavily on the subset of genes (e.g.
variable genes) chosen before dimension reduction as
well as on general preprocessing [36]. Despite these
challenges, RNA velocity is widely applicable as the
mature and pre-mRNA read counts are inherent to
conventional scRNA-seq.
Current Opinion in Systems Biology 2021, 26:1–11
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Trajectory inference with time information
Time-series experiments, where single cells are profiled

at multiple time points, enable the reconstruction of
dynamic processes from static measurements. Although
each measurement remains destructive, this design can
mitigate its shortcomings by providing physical time
anchors to cell pseudotime (Figure 1). A growing
number of computational methods have been proposed
to take advantage of time series samples. Some use
physical time to improve the accuracy in pseudotime
inference (e.g. pseudodynamics [37] psupertime [38]).
Tempora additionally uses clusters’ pathway enrich-
ment profiles to connect related cell types and states

across time points [39].

More interestingly, physical time opens up the possi-
bility to infer the probabilistic differentiation fate of
individual cells. Waddington-OT [40] and Trajector-
yNet [41] summarize observations of cell states with a
distribution at each time point and minimize the dis-
tribution density relocation across time points, known
originally as ‘optimal transport’ in transportation theory.
These methods can derive a transition probability
matrix (as in RNA velocity) for short-term extrapolation

and induce likely trajectories [40]. PRESCIENT [42]
learns the underlying differentiation dynamics based on
a generative deep learning model from time-series gene
expression data and can predict long-term cell fate by
simulating differentiation with stochastic Markov
process.

Despite these advantages, time-series experiments
typically require a multibatch design and therefore
incur the added potential for batch effects. In addition,
a finer sampling resolution in physical time also de-

mands higher costs in labor and resources. On the
computational side, extrapolations based on time-series
information are also subject to a decline in accuracy at
longer time scales.
Cell fate modeling with lineage tracing
Lineage tracing provides a parallel modality to mitigate
the drawbacks of inferring the long-term dynamics from
destructive single-cell measurements. Lineage tracing
uses artificial (e.g. cell barcode) or natural (e.g. somatic
mutations) variations in cellular DNA to reconstruct
cell lineages. Because variations in genomic DNA are
heritable, daughter cells can be traced back to their

shared ancestor despite the limitations of destructive
measurements. Combined with other single-cell mea-
surements, these lineage tracing technologies provide
supplemental information to improve trajectory infer-
ence and to interrogate developmental processes
(Figure 1). Orthogonally, these experiments serve as
potential benchmarks for existing methods for trajec-
tory inference.
www.sciencedirect.com
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Table 2

A shortlist of computational methods and software to reconstruct single-cell trajectories.

Name Input Output URL Description

Trajectory inference
from snapshot data
(see Ref. [13] for a
comprehensive list)

Wishbone [20] Transcriptome Pseudotime https://github.com/dpeerlab/
wishbone

Wishbone orders cells and identifies branches by
building a k-NN graph and calculating the
shortest paths between states based on a set of
‘waypoints.’

DPT [21] https://www.helmholtz-muenchen.
de/icb/research/groups/
machine-learning/projects/dpt/
index.html

DPT reconstructs cellular developmental
progression and branching decisions by
measuring transitions between cells based on
diffusion-like random walks.

Palantir [23] https://github.com/dpeerlab/
Palantir/

Palantir assigns pseudo-time to cells by modelling
cell fates as a probabilistic process using a
Markov chain.

PAGA [22] Pseudotime
Trajectory graph

https://github.com/theislab/paga PAGA learns the topology of cells at a chosen
resolution by partitioning a k-NN graph and
ordering cells using random-walk-based
distances in the PAGA graph.

Monocle [14–16] https://cole-trapnell-lab.github.io/
monocle3/

Monocle infers trajectories by learning a minimum
spanning tree, a DDRtree-based principal tree,
and a SimplePPT-based principal graph,
respectively. Cells are ordered by projecting
them to the learnt graph.

TSCAN [17] https://github.com/zji90/TSCAN TSCAN infers cellular trajectories by learning a
minimum spanning tree and pseudotime is
obtained by projecting each cell onto the learnt
tree.

Slingshot [18] https://github.com/kstreet13/
slingshot

Slingshot infers cell lineages using simultaneous
principal curves and pseudotime is obtained by
projecting cells onto these curves.

STREAM [19] https://github.com/pinellolab/
STREAM

STREAM infers trajectories by learning an elastic
principal graph and orders cells by projecting
them onto the learned graph.

CALISTA [26] https://www.cabselab.com/calista CALISTA uses a steady-state model of
transcriptional bursting for trajectory inference.

RNA velocity Velocyto [32] mRNA
Pre-mRNA

Pseudotime
RNA velocity

http://velocyto.org/ Velocyto uses a steady-state model to describe
mRNA dynamics.

ScVelo [33] https://github.com/theislab/scvelo ScVelo fits a dynamic model to infer RNA velocity
and pseudotime.

CellRank [35] Pseudotime
RNA velocity
Cell fate

https://github.com/theislab/cellrank CellRank extrapolates RNA velocity to long-term
cell fate with Markov processes.

Dynamo [34] mRNA pre-mRNA
metabolic labelling

https://github.com/aristoteleo/
dynamo-release

Dynamo can handle metabolic labeling of pre-
mRNA for RNA velocity, and extrapolate it to
long-term cell fate.

Trajectory inference with
time information

pseudodynamics [37] Transcriptome Time Pseudotime https://github.com/theislab/
pseudodynamics

Pseudodynamics is a mathematical probabilistic
framework that combines cell state dynamics
and pseudotemporal ordering to infer
underlying developmental trajectories.

(continued on next page)
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Table 2. (continued )

Name Input Output URL Description

psupertime [38] https://github.com/wmacnair/
psupertime

Psupertime is a regression-based supervised
pseudotime assignment approach that can not
only project each cell onto a pseudotemporal
axis but also identify genes regulated during
biological processes.

Waddington-OT [40] https://broadinstitute.github.io/wot/ Waddington-OT is an optimal transport-based
approach that uses time course scRNA-seq
data to infer ancestor-descendant fate
relationships and the dynamic changes (of cell
identity via gene expression) probability
distributions over time.

TrajectoryNet [41] https://www.krishnaswamylab.org/
projects/trajectory-net

TrajectoryNet captures dynamic optimal transport
between distributions of time series data to
model dynamic trajectory continuously along
time.

Tempora [39] Transcriptome Time
Clustering

https://github.com/BaderLab/
Tempora

Tempora is an information-theoretic approach
that combines time labels and biological
pathway information to infer trajectory at the cell
cluster level.

PRESCIENT [42] Transcriptome
Time

Cell fate https://github.com/gifford-lab/
prescient

PRESCIENT infers trajectory by integrating gene
expression and physical time with or without
lineage information using a deep generative
model.

Single-cell lineage tracing LineageOT [54] Transcriptome
Lineage

Phylogenetic tree None LineageOT infers trajectory and lineage trees by
optimal transport, optimizing distances of
leaves of dynamical phylogenetic trees across
timepoints.

LinTiMaT [53] https://github.com/jessica1338/
LinTIMaT

LinTiMaT infers lineage trees integrating mRNA
and lineage with a Bayesian hierarchical
clustering.

PRESCIENT [42] Transcriptome
Time
Lineage

Cell fate https://github.com/gifford-lab/
prescient

PRESCIENT uses optional clonal count to inform
its model parameters.
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Figure 2

Current Opinion in Systems Biology

Emerging assays (a) and current computational opportunities to extend trajectory inference (b).
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Lineage tracing technologies that are capable of parallel
quantifications of lineage and other modalities (e.g.

transcriptomics and chromatin accessibility) in the same
single cells can be broadly split into three categories
(Table 1). In the first [4,7,8,43e45], DNA barcodes are
integrated into the genome of cells via a lentiviral vector
and later detected in daughter cells. This is accom-
plished by scRNA-seq read-out of the expressed tran-
scripts along with the barcoded transcripts. In the
second [46e48], CRISPR-Cas9 is delivered to cells and
targeted to predefined sequences to introduce unique
combinations of DNA mutagenesis and create a set of
evolving barcodes over time. This is accomplished by

targeted DNA sequencing with shared primers specific
to the integrated amplicon with or without common
scRNA-seq. Notably, these two categories can also be
combined for higher resolution lineage tracing [9]. In
the third, somatic variations such as short tandem
www.sciencedirect.com
repeats [49] or mitochondrial DNA [11,50,51] are pro-
filed. Mitochondrial DNA mutates at a higher rate than

nuclear DNA, enabling lineage tracing. See Ref. [29] for
an in-depth review.

Computational methods have been proposed to recon-
struct phylogenetic lineage tree based only on lineage
tracing information (e.g. DNA barcodes) [52] or by
incorporating also gene expression information as in
LinTIMaT [53]. For trajectory inference, LineageOT
extends Waddington-OT’s optimal transport by incor-
porating lineage information to improve cell fate pre-
diction [54]. PRESCIENT can also leverage lineage

information when available to inform its model param-
eters with clonal cell count [42].

Single-cell lineage tracing is a fast-developing field with
several emerging technologies. However, current assays
Current Opinion in Systems Biology 2021, 26:1–11
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pose several challenges. For example, lineage tracing
assays based on genome editing are difficult to apply to
primary human tissues. In addition, the detection of
DNA variations is limited by the inherent single-cell
data sparsity. At the time of writing, computational
methods for trajectory inference with lineage tracing are
still in active development with very few off-the-shelf
solutions.

Taken together, our brief review of methods shows that
they are often based on similar principles, but additional
information often leads to more expressive and accurate
modeling of trajectory and cell fate prediction. We have
categorized and summarized a noncomprehensive list of
these methods with required inputs, outputs, core ideas,
and software implementations in Table 2. We hope this
table can provide a useful resource to select the appro-
priate analysis method based on available experimental
assays and designs.
Future perspectives
The development of methods for trajectory inference
has been driven by two parallel frontiers: the upstream
technological developments followed by the down-

stream biological investigation and discovery. As novel
technologies and methodologies emerge, the biological
questions are being refined. Trajectory inference pro-
vides numerous exciting possibilities to take advantage
of technological advancements to answer outstanding
questions in biology (Figure 2).

More scalable and cost-effective single-cell assays are
continuously emerging. These assays combined with
genetic perturbations and drug treatments offer un-
precedented opportunities to dissect and study cellular
specification, differentiation, and development in

health and disease.

In this context, trajectory inference offers an impor-
tant modeling tool to detect ‘differential trajectory,’
that is, whether and how cells of different conditions
are distributed in a putative shared trajectory graph.
A straightforward answer may arise from direct com-
parisons of the inferred trajectory graphs or cell fates,
but it remains challenging to account for the trajec-
tory/fate inconsistencies because of the technology
used for data generation, data preprocessing measures

such as normalization and batch correction, and tra-
jectory inference parameterization. Although these
choices have not been systematically assessed in the
context of trajectory inference, we believe this is an
important area of investigation. For example, a recent
study [55] has demonstrated how normalization pro-
cedures (e.g. log of counts per million) and feature
selection based on highly variable genes may intro-
duce false variability in procedures for dimensionality
reduction. This study also introduces a package called
Current Opinion in Systems Biology 2021, 26:1–11
GLM-PCA (PCA for generalized linear models) that
provides methods for feature selection and dimen-
sionality reduction based on a multinomial modeling
of count data. Even though this study showed how
these modeling choices can improve clustering as a
downstream task, we believe that the proposed pro-
cedures can also benefit trajectory inference methods.
In addition, another recent study [36] has shown how

these preprocessing steps are also important for RNA
velocity estimation, as discussed in the RNA velocity
section.

In parallel, a cell-level interpretation would ask a ‘dif-
ferential cell fate’ question, that is, how individual cell
fate can be affected, based on either caseecontrol ex-
periments or in silico perturbations. Initial methodo-
logical efforts in these directions (e.g. CellAlign) have
been made to align and compare pseudotimes and tra-
jectory graphs [56e59]. Still, this area is in its infancy,

and formulating statistical models is difficult but re-
mains crucial.

Differentiation is long believed to be a process of gene
regulatory network rewiring that determines cell iden-
tity and function. Trajectory inference offers a reference
graph along which the rewiring may be recovered at
improved time and gene resolutions [60]. Such ‘dy-
namic gene regulatory networks’ may reveal the tran-
sient and sequential regulatory events that drive or
commit cells to differentiation, in parallel with

trajectory-based differential gene expression that fo-
cuses on molecular events [61].

In addition, single-cell multiomics provide a more
comprehensive understanding of intracellular pro-
cesses, especially in distinguishing the causes from
consequences of lineage commitment. Initial efforts
toward the multiomics trajectory inference have been
made (e.g. STREAM reconstructs developmental tra-
jectories from either single-cell transcriptome or
chromatin accessibility). More recently, joint single-
cell transcriptome and chromatin accessibility profiles

were used to infer cell fate decisions by predicting the
cells’ future transcriptome states from their current
chromatin profiles (‘chromatin potential’) [11]. This
analysis revealed how dynamic changes in chromatin
accessibility precede corresponding gene expression in
cell lineage commitment [10,11,62]. Protein-mRNA
joint measurements have also enabled protein veloc-
ity to extrapolate cell states [63]. These assays will
continue to unveil opportunities toward more accurate
and mechanistically insightful trajectory inference.
However, integrating single-cell multiomics remains a

current computational challenge [64]. There are two
potential strategies to infer joint multimodal trajec-
tories (Figure 2b). One is to do crossmodality inte-
gration (e.g. Seurat [65], Conos [66], and MOFAþ
[67]) and then infer trajectory directly in the
www.sciencedirect.com
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integrated space. Another is to infer the trajectory
separately per modality and later integrate those tra-
jectories into one.

Live-cell imaging can measure and track mRNA and
protein molecules within single cells in a real-time,
nondestructive manner [68,69]. This technology fea-
tures the unique capacity to track the abundance and

localization of individual molecules in the same cell
across multiple time points, rather than choosing a
surrogate similar cell at a future time in conventional
destructive measurements. Nevertheless, most of these
assays are invasive (require genetic engineering of
targeting cells) and can measure only a handful of genes
simultaneously in each single cell [68,70]. Live-imaging
techniques require further improvement to overcome
these limitations.

Finally, single-cell spatial transcriptomic technologies

can capture gene expression variations across histologi-
cally discrete cell types in a high-throughput manner.
The combination of spatial mapping and cell transition
inference may unveil the transcriptional changes and
mechanisms of anatomically restricted cell populations
and provide novel insights into the molecular programs
within developing tissues [71].

In conclusion, as single-cell assays and technologies
constantly evolve toward multiple modalities and higher
resolution, harnessing their full potential poses several

computational challenges but also opens new opportu-
nities for more accurate and refined trajectory inference.
Trajectory inference is an evolving and exciting field
where the fusion of experimental technologies and
computational methods is poised to progressively unfold
the fundamentals of developmental biology.
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